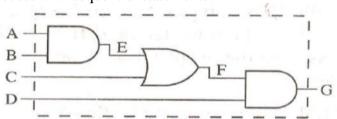
Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

3

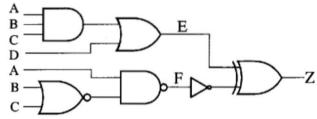
4

FIFTH SEMESTER B.TECH (INSTRUMENTATION & CONTROL ENGG.) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: DIGITAL SYSTEM DESIGN [ICE 311]


Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:


- **❖** Answer **ANY FIVE FULL** questions.
- Missing data may be suitably assumed.
- **1A.** Write the truth table for following equation:

 $F = (A \oplus B)C + A'(B \oplus C)$

- **1B.** Write VHDL code for the following circuit. Assume that the gate delays are negligible.
 - (a) Use concurrent statements.
 - (b) Use a process with sequential statements.

- **1C.** What do you mean by hazards in combinational networks? Explain the types of hazards.
- **2A.** Explain the different Scalar data types used in VHDL. Illustrate each with examples. **4**
- **2B.** Draw a complete Y-chart showing different levels and domains of abstraction.
- **2C.** Explain the structure of a VHDL program.
- **3A.** Write a sequential VHDL code for a T flip-flop.
- **3B.** Write a VHDL description of the following combinational circuit using concurrent statements.

- **3C.** Explain procedures and write a procedure for sorting a greater value when two values are provided.
- **4A.** Write a structural VHDL code for a full adder assuming that full adder has been defined as a component.

ICE 311 Page 1 of 2

4B.	Briefly explain the different operators used in VHDL.			
4C.	Write a test bench to verify the working of a JK flip-flop.			
5A.	Briefly explain how ROMs are classified.			
5B.	Explain the different types of FPGA programming technologies.			
5C.	Find a minimum-row PLA to implement the following two functions:	3		
	$f(A,B,C,D) = \Sigma m(3,4,6,9,11)$ $g(A,B,C,D) = \Sigma m(2,4,8,10,12,14)$			
<i>-</i> 1	$h(A, B, C, D) = \Sigma m(3,6,7,10,11)$	_		
6A.	With a block diagram explain the operation of a programmable I/O block in FPGA.	6		
6B.	Explain scan testing with a block diagram.	4		

******** END ********

ICE 311 Page 2 of 2