

FIFTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: MODERNN CONTROL THEORY [ICE 301]

Time: 3 Hours

MAX. MARKS: 50

	Instructions to Candidates:			
	Answer ANY FIVE FULL questions.			
 Missing data may be suitably assumed. 				
1A.	. What are the advantages of state space analysis			
1 B.	Consider the system with transfer function	3		
	$G(s) = \frac{s+2}{s(s+4)(s+5)}$. Obtain the state model in cascade form.			
1C.	A state model is given below. Using linear transformation obtain another state model $\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -30 & -31 & -10 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u ; y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x$	5		
2A.	Write down any two formula's for finding state transition matrix	2		
2B.	The state space representation of a system is given by $\dot{x} = \begin{bmatrix} -1 & 1 \\ -1 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$, $y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$ Obtain the transfer function.	3		
2C.	A Continuous time system is described by the state model	5		
	$\dot{x} = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ -4 & -2 & -1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u \ ; \ y = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x; \ \text{Is the system is observable}?$			
3A.	Also design a state feedback observer which will place the closed loop observer poles at $s = -0.5$, $s = 0$ and $s = 1$ verify the result by applying Ackermann's formula. Explain Jump phenomena in nonlinear systems	2		
3B.	Derive describing function of Saturation nonlinearity	3		
3C.	In the forward path of a unity feedback system, a saturating amplifier shown in figure	5		
	Q3C is cascaded with a linear plant having $G(s) = \frac{1}{s(s+2)(s+4)}$. Determine the			
	largest value of K for the system to remain stable.			

Fig. Q3C

4A.	Define (i) Sylvesters criteria (ii) Stability in the sense of Lyapunov.			
4B.	Determine the stability of the origin of the following system. $\dot{x}_1 = -x_2 - x_1^3$ $\dot{x}_1 = x_1 - x_2$			
4C.	$x_2 = x_1 - x_2$ Check the sign definiteness of the following quadratic functions		5	
	i)	$F(x) = 2x_1^2 + 4x_2^2 + 2x_3^2 + 2x_1x_2 + 8x_1x_3 - 8x_2x_3$		
	ii)	$F(x) = 4x_2^2 + 2x_3^2 + 3x_1x_2 - 8x_2x_3 - 2x_1x_3$		
	iii)	$F(x) = 2x_1^2 - x_2^2 + 2x_3^2 + 3x_1x_2 + 8x_1x_3 - 8x_2x_3$		
	iv)	$F(x) = 2x_1^2 + 4x_2^2 + 5x_3^2 - 2x_1x_2 + 8x_1x_3 - 8x_2x_3$		
	v)	$F(x) = x_1^2 + x_2^2 + 5x_3^2 + 2x_1x_2 + 2x_1x_3 - 6x_2x_3$		
5A.	Define (i) Phase plane (ii) Describing function			
5B.	Explain Isicline method for drawing phase trajectories			
5C.	Find the equilibrium points for the system described by $\ddot{y} + (1 - y) \dot{y} + 3y + 0.5y^3 = 0$			
6A.	State Lyapund	ov (i) Stability theorem (ii) Instability theorem	2	
6B.	Generate a Lyapunov function and determine the stability of the following system $\dot{x} = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} x$			
(0	Dotomaino the	time of singular point and draw phase plane portrait for the since Var day set	_	

6C. Determine the type of singular point and draw phase plane portrait for the given Vander pol equation $\ddot{x} - (0.2 - \frac{10}{3}x^2)\dot{x} + x + x^2 = 150$. Define all singularities sketch the phase plane trajectories near each singularity.