Reg. No.
 Image: No.

 MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL A Constituent Institution of Manipal University

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) MAKE-UP EXAMINATIONS, DEC/JAN 2016

SUBJECT: ADVANCED PROCESS DYNAMICS AND CONTROL [CHE-443] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions	to Candidates:
--------------	----------------

- ✤ Answer ANY FIVE FULL questions.
- ✤ Missing data may be suitable assumed.

1 A .	Explain the working principle of cascade control strategy with an example.	08
1B.	Distinguish between Feedback control and Feedforward control schemes with suitable example.	08
1C.	Why do you think the performance of the smith predictor scheme will be sensitive to the modelling errors?	04
2A.	The characteristic equation for a certain closed loop digital control system is given as:	10
	$1 + 0.4z^{-1} - 0.2z^{-2} - 0.4z^{-3} - 0.5z^{-4} = 0$	
	Using Jury's method determine whether this system is stable or not.	
2B.	Consider an ARMA model of the form	06
	y(k) = -ay(k-1) + e(k) + ce(k-1)	
	Which equivalent to	
	$y(k) = H(q)e(k) = \frac{1 + cq^{-1}}{1 + aq^{-1}}e(k)$	
	e(k) is a sequence of independent normal random variables. Develop one step ahead	
	predictor $\hat{y}(k+1 k)$, which uses only the current and the past measurements of y.	
2C.	Solve the following difference equation using z-transform method.	
	y(k+2)+3y(k+1)+2y(k)=0;	
	Given, $y(0) = 0; y(1) = 1.$	
	Obtain y(k) series for k=0,1,2,3,4.	
3A.	Derive the parameter estimation problem for given model structure shown below.	10
	$y_1(k) = \frac{b_1}{q+a_1}u_1(k) + \frac{b_2q+b_3}{q_2+a_2q+a_3}u_2(k)$	
	You are expected to demonstrate all the steps involved.in the estimation problem.	
3B.	Explain the detailed procedure of designing de-coupler for 2x2 system. You are expected to	10
	show the block diagram of 2x2 system with decoupler.	

4A The transfer function for a 2x2 subsystem extracted from the 3x3 model for an industrial de-08 ethanizer is as follows: $G(s) = \begin{bmatrix} \frac{1.318e^{-2.5s}}{20s+1} & \frac{-e^{-4s}}{3s} \\ \frac{0.038(182s+1)}{(20s+1)(10s+1)(6.5s+1)} & \frac{0.36}{s} \end{bmatrix}$ Obtain the RGA for this system and use it to recommend loop pairing. **4B** Find the Z-transform of the 06 a) unit step function i.e., $x(t) = \begin{cases} 1.(t) & 0 \le t \\ 0. & t < 0 \end{cases}$ b) Unit Ramp function i.e., $x(t) = \begin{cases} t, & 0 \le t \\ 0, & t < 0 \end{cases}$ 4C 06 Discuss the different condition for stability of linear continuous time state space model. 5A. Consider the following system 12 $x(k+1) = \begin{bmatrix} 1/2 & 1/4 \\ -1/2 & 0 \end{bmatrix} x(k) + \begin{bmatrix} -2 \\ 1 \end{bmatrix} u(k) + w(k); \quad y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k) + v(k)$ It is desired to develop a state feed feedback control law of the form u(k) = -Gx(k). Find the matrix 'G' such that the poles of $(\Phi - \Gamma K)$ are placed at $\lambda = -0.3 \pm j0.3$ Discuss the Controllability and Observability concept in general terms and how is obtained 5B. 08 from model equations 6A. Consider fourth order system as 06 $y(k) = G(q)u(k) = \frac{b_1q^2 + b_2q + b_3}{q^4 + a_1q^3 + a_2q^2 + a_2q + a_4}u(k),$ Obtain the state space realization (controllable canonical) of the form $x(k+1) = \Phi x(k) + \Gamma u(k)$ v(k) = Cx(k)Such that, $C[qI - \Phi]^{-1} = G(q)$. Develop a parameter estimation problem for Impulse response model of the form, 6B. 08 $y(k+1) = y(0) + \sum_{i=1}^{i} h_i u(k-i+1)$ Where *h*_i-Impulse coefficients 6C. 06 Discuss the working principle of model predictive control with state estimator