Reg. No.

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: OIL AND GAS RESERVOIR ENGINEERING [CHE 411]

REVISED CREDIT SYSTEM (30/11/2016)

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL questions.
- ✤ Missing data may be suitable assumed.

1A.	What are the primary functions of a reservoir engineering? Which concept(s) you need to aware								
	of to evaluate the primary functions? Explain in detail.	8							
1B.	What are the applications of the real gas equation of state PV=ZnRT?								
1C.	Explain the retrograde condensation in reservoir with a fluid phase diagram.								
2A.	Derive the expression for productivity index of a reservoir in field units for radial steady state								
	inflow conditions.	12							
2B.	What is mobility control? How do you achieve the same?	4							
2C.	Explain the methods of tertiary flooding for enhanced oil recovery.	4							
3A.	Derive the following basic equation for the radial flow of a fluid in a homogeneous porous								
	medium with a neat schematic. $\frac{1}{r}\frac{\partial}{\partial r}(\frac{k\rho}{\mu}r\frac{\partial p}{\partial r}) = \phi c\rho \frac{\partial p}{\partial t}$								
		10							
3B.	Discuss the semi steady state and steady state conditions of solution for the above radial flow								
	differential equation.	5							
3C.	Linearize the above basic radial flow equation for fluids of small and constant compressibility								
	by mentioning the assumptions considered.	5							
4A.	A homogeneous formation in a reservoir has an average effective permeability k_e . The effective								
	permeability out to a radius r _a from the well has been damaged so that its average value in this								
	region is k _a . Show that the skin factor may be expressed as $S = \frac{k_e - k_a}{k_a} \ln \frac{r_a}{r_w}$ where r _w is the								
	wellbore radius. Assume that for $r < r_a$ the flow can be described under steady state conditions								
	and that for $r > r_a$ semi steady state.	10							

	During drillin	ig, a well	is damage	d out to	a radius o	of 4 ft fr	om the w	vell bore,	r _a so tha	t the	
	permeability within the damaged zone, k_a is reduced to $1/100^{\text{th}}$ of the undamaged effective										
4B.	permeability, ke. After completion the well is stimulated so that the permeability out to a										
	distance of 10 ft from the wellbore is increased to ten times the undamaged permeability. What										
	will be the PI ratio increase if the wellbore radius, r_w is 0.333 ft and the drainage radius, r_e is										
	660 ft?				,	•			6 ,		1
	i) Calculate the density of the gas at standard conditions whose composition is listed below:									/ :	
	Component	Methane	Ethane	Propane	Butane	Pentane	Hexane	CO ₂	Nitroge		
5A.	mole fraction	0.847	0.0586	0.022	0.0093	0.0052	0.0104	0.013	•		
54.											
	ii) For the above gas what is the pressure gradient in the reservoir at 2000 psia and 180°F (Z = 0.065)										
	0.865)										
5B.	Write the complete PVT analysis of oil.										
5C.	Define R _s , B _o , B _g parameters.										_
	A gascap reservoir cumulative oil production N_p and cumulative gas oil ratio R_p are listed in										
	below table along with the relevant PVT parameters under the assumption that $p_i = p_b$. The size										
	of the gascap, m and initial oil volume, N are uncertain but based on geological information and										
	volumetric calculations the values are $m = 0.4$ and $N = 115 \times 10^6$ stb. Are these values										
	confirmed by the production and pressure history? If not, what are the correct values of m and										
6A.	N?										
	Pressu	ure, 332	30, $p_i = p_b$	3150	3000	2850	2700	2550	2400		
	psia	a	50, pi – po								
	N _p , MN R _p , scf			3.295 1050	5.903 1060	8.852 1160	11.503 1235	14.513 1265	17.730 1300		
	B_0, rb_0		1.2511	1.2353	1.2222	1.2122	1.2022	1.1922	1.1822		
	R_s, scf		510	477	450	425	401	375	352		
	B _g , rb		.00087	.00092	.00096	.00101	.00107	.00113	.00119		•
6B.											