Reg. No.

VII SEMESTER B.TECH. (CHEMICAL ENGINEERING) END SEMESTER MAKEUP EXAMINATIONS, DEC/JAN 2016/17

SUBJECT: OIL AND GAS RESERVOIR ENGINEERING [CHE 411]

REVISED CREDIT SYSTEM (02/01/2017)

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

✤ Answer ANY FIVE FULL questions.

✤ Missing data may be suitable assumed.

1A.	How to you calculate the stock tank oil initially in place (STOIIP).										
1B.	Describe the ways to determine the Z as a function of pressure.										
2.	The following data are available for a newly discovered gas reservoir: $GWC = 9700 \text{ ft}; \text{ Centroid depth} = 9537 \text{ ft}; \text{ Net bulk volume (V)} = 1.776 \text{ X } 10^{10} \text{ cu.ft};$ $\Phi = 0.19; \text{ S}_{wc} = 0.20; \gamma_g = 0.85. \text{ It is estimated that the water pressure regime in the locality, P_w}$ $= 0.441D+31 \text{ psia and the temperature gradient is } 1.258^{\circ}\text{F}/100 \text{ ft}, \text{ with ambient surface temperature 80^{\circ}\text{F}}.$ 1) Calculate the volume of the GIIP. 2) It is intended to enter a gas sales contract in which the following points have been $U=0.95$										
	 stipulated by the purchaser. a) During the first two years, a production rate build-up from zero-100 MMscf/d must be achieved while developing the field. b) The plateau rate must be continued for 15 years at a sales point delivery pressure which corresponds to a 										
	 minimum reservoir pressure of 1200 psia. Can this latter requirement be fulfilled? (Assume that the aquifer is small). c) Once the market requirement can no longer be satisfied the field rate will decline 										
	exponentially by 20% per annum until it is reduced to 20 MMscf/d. What will be the total recovery factor for the reservoir and what is the length of the entire project life?										
3A.	Explain the surface recombination sampling.	5									

3B.	The oil and gas rates, measured at a particular time during the producing life of a reservoir are x											
	stb oil/day and y scf gas/day.											
	i) What is the corresponding underground withdrawal rate in reservoir barrels/day?											
	ii) If the average reservoir pressure at the time the above measurements are made is 2400 psia,											
	calculate the daily underground withdrawal corresponding to an oil production of 2500 stb/day											
	and a gas rate of 2.125 MMscf/day. Field PVT parameters are given below.											
		Pressure, psia B _o , rb/stb R _s , scf/stb B _g , rb/scf										
		2400		1.1822 352		.00119						
	i) If the density of the oil at standard conditions is 52.8 lb/cu.ft and the gas gravity is 0.67 (air											
	= 1), calculate the oil pressure gradient in the reservoir at 2400 psia.										15	
4A.	Determine an expression for the recovery at abandonment pressure of 1500 psia as a function of											
	the cumulative gas oil ratio R _p for an unsaturated oil reservoir whose PVT parameters are given											
	below in a table and for which $c_w = 3 \times 10^{-6}$ /psi; $c_f = 8.5 \times 10^{-6}$ /psi; $S_{wc} = 0.20$. What do you											
	conclude from the nature of this relationship? Plot the recovery 0-50% with respect to R_p .											
		4000,										
	Pressure,	,	3500	3330, p _b	3000	2700	2400	2100	1800	1500		
	psia	p_i										
	B _o , rb/stb	1.2417	1.248	1.2511	1.2222	1.2022	1.1822	1.1633	1.145	1.1287		
	R _s , scf/stb	510	510	510	450	401	352	304	257	214		
	B _g , rb/scf			.00087	.00096	.00107	.00119	.00137	.00161	.00196	10	
4B.	How do you	determine	the PV	T paramet	ers in labo	oratory an	d conver	t these to	field para	ameters.	10	
5.	Derive the Schilthuis material balance equation for a hydrocarbon reservoir which includes the											
	effects of all reservoir drive mechanisms.											
6A.	What is the conversion factor between absolute permeability k, expressed in Darcy and in cm ²											
	respectively	?									5	
6B.	Explain how	does redu	il recover	y. How o	lo you ac	hieve the	5					
	same?										5 10	
6C.	Describe the mechanics of the supplementary recovery.											

******** END *******