Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

VII SEMESTER B.TECH. (CIVIL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: **BRIDGE ENGINEERING** [CIE 429]

REVISED CREDIT SYSTEM (25/11/2016)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- **❖** Answer **ANY FIVE FULL** questions.
- Missing data may be suitable assumed.
- ❖ IRC 6, 18, 21 and charts permitted.

1A.	List out any five important factors that has to be considered while the site for construction of bridge.					
1B.	The approximate cogiven below. Estima Span (m) Superstructure Substructure			20 1,43,000 46,000	5	
2.	A Tee beam bridge has to be provided across a channel having the following data. Design the cantilever slab portion Span of the bridge: 12.0m Road: National Highway (2 lanes) = 7.5m Footpath: 1m Wide on either Side & 200mm above the wearing coat Loading: IRC class A Materials: M25 concrete. Fe 415 steel No. of longitudinal girders: 3 numbers positioned at 3m centre to centre spacing Rib width of each beam: 300mm Cantilever slab thickness: 240mm at its fixed end and 100mm at its free end.				10	
3.		een abutments = 1 m on either a 400 mm 1 m average 1 s AA (Tracked) 1 ane) =7.5 m	llowing data (check for the formula of the formula	or shear not necessary)	10	

CIE 429 Page 1 of 3

4A.	Describe different types of pier with the help of neat sketch	5				
	What are the special features of Prestressed concrete bridge in comparison with					
4B.	normal reinforced concrete or steel bridge?					
	With the help of neat sketch, Write short note on					
5A.	(i) Steel Rocker bearing					
	(ii) R.C fixed (rocker) bearing					
	Design an elastomeric unreinforced neoprene pad bearing to suit the following data:					
5B.	Vertical load (sustained): 220kN					
	Vertical load (Dynamic) :40kN					
	Horizontal force (sustained): 20kN					
	Horizontal force (dynamic): 20kN					
	Modulus of rigidity of elastomer 'G': 1N/mm ²					
	Friction coefficient: 0.3					
	dopt, dimension of elastomeric bearing: a = 250mm & b = 500mm					
6A.	Explain various components of well foundation.	3				
	A prestressing concrete slab deck of a bridge is 450mm thick with an effective span					
6B.	of 8.5m. The service load is computed as 350kNm/m at centre of span section. If the					
	compressive stress permissible at transfer is 16N/mm ² and tensile stresses are not					
	permitted, check the adequacy of section & estimate the minimum prestressing force					
	& also calculate the corresponding eccentricity at mid span section. Assume loss					
	ratio=0.8					

CIE 429 Page 3 of 3