Reg. No.

VII SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKEUP EXAMINATIONS, DEC 2016 - JAN 2017

SUBJECT: ADVANCED CONTROL SYSTEMS [ELE 431]

REVISED CREDIT SYSTEM

Time:	3 Hours Date: 02 January 2017	MAX. MARKS: 50
Instructions to Candidates:		
	Answer ANY FIVE FULL questions.	
	Missing data may be suitably assumed.	
1A.	With the help of input-output characteristics, discuss four types of nonline in physical systems.	earities present 03
1B.	Linearize the following equation $\ddot{x} + (1 + x)\dot{x} - 2x + 0.5x^3 = 0$ around Also find the Eigen values of the linearized system and predict the n trajectory.	nd $(x, \dot{x}) = (0, 0)$. ature of phase 04
1C.	What are singular points? How are they classified for a second order linear system?	r time invariant 03
2.	Explain Describing function theory highlighting the assumptions ma sketches, Derive the describing function for dead-zone nonlinearity. A sing	de. With neat gle loop system
	has $G(s) = \frac{10}{(s+2)^3}$ cascaded to dead-zone nonlinearity. Determine the stab and frequency of the limit cycle when Δ =0.1 and K=1.	ility, amplitude 10
3A.	Draw the phase trajectory for the system given below with initial condition using isocline method (2 quadrants) $\ddot{x} + 0.6\dot{x} + 3x = 0$	ns $(x, \dot{x}) = (0, 1)$ 03
3B.	Show that the origin of $\dot{x}_1 = x_2$; $\dot{x}_2 = -x_1^3 - x_2^3$ is globally asymptotica Lyapunov's direct method.	lly stable using 04
3C.	Explain Krasovskii's method of constructing Lyapunov function for a no described by $\dot{x} = f(x)$.	nlinear system 03
4A.	Consider the system $\dot{x} = -x + u$ which is to be transferred from x(0)= 3 that J = 0.5 $\int_0^1 u^2 dt$ is minimized. Find the optimal control u*(t) using Pontr	to x(1)=0 such yagin principle. 04
4B.	The discrete approximation of a CT system is given by $x[k + 1] = 0.5x$ performance index to be minimized is $J = \sum_{k=0}^{2} x(k) $. The admissible state are constrained as follows $0 \le x(k) \le 0.2$, and $-0.1 \le u(k) \le 0.1$. Quantiz control in steps of 0.05. i)Use dynamic programming to determine optime find ii) the optimal control sequence, if the initial state is at $x(0)=0.2$.	[k] + u[k]. The ates and control e the state and al law and also 06
5A.	The system is described by $\dot{x_1} = x_2$; $\dot{x_2} = u$. Design the optimal state recontrol law is given by u=-k(x_1+x_2) using Lyapunov's method to performance index $\mathbf{J} = \int_0^\infty (\mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{u}^T \mathbf{R} \mathbf{u}) d\mathbf{t}$. Take x(0)=[1 0].	egulator whose minimize the 06

- **5B.** A unity feedback control system has the forward path transfer function $G(s) = \frac{2}{s(s+a)}$. The reference input is a unit step input and is initially at rest. Determine the value of 'a' which minimizes Integral Square Error. Find J_{min}.
- **6.** Consider a system given by the following state space model

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u; \ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x;$$

- i) Design an optimal control law using Algebraic Riccati equation so that $J = \int_0^\infty (x^2 + u^2) dt$ is minimized.
- ii) Derive the expression for Kalman estimator highlighting the assumptions made. **10**