Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY

Manipal University

SEVENTH SEMESTER B.TECH (E & C) DEGREE END SEMESTER **EXAMINATION - NOV/DEC 2016** SUBJECT: INFORMATION THEORY AND CODING (ECE - 407)

TIME: 3 HOURS **Instructions to candidates** Answer ANY FIVE full questions.

- Missing data may be suitably assumed.
- 1A. Let S be zero memory source with source alphabet $S = \{s_i\}, i = 1, 2, ..., q$, and symbol probabilities P_1, P_2, \dots, P_q . Construct a new zero memory source S' with twice as many symbols, $S' = \{s'_i\}, i = 1, 2, ..., 2q$. Let P_i , the symbol probabilities for the new source, defined by $P_{i}' = (1 - \epsilon)P_{i}$, for i = 1, 2, ..., q and $P_{i}' = \epsilon P_{i-q}$ i = q + 1, q + 2, ..., 2q. Express H(S') in terms of H(S).
- 1B. A dice is thrown twice. Find P (A/B) if (a) A, a unity occurs on the first throw, B, the score is less than four, (b) A, a five occurs on the second throw, B, the score is not less than 10, (c) A, even occurs on the second throw, B, odd occurs on the first throw.
- 1C. Starting from the logarithmic inequality, show that the entropy of the discrete memoryless source is maximum if its symbols are equiprobable.

(5+3+2)

MAX. MARKS: 50

- The state diagram of a first order binary Markov source S is given in Figure Q2A. Compute H(S) 2A. and $H(\overline{S^2})$. Identify extensions S^2 and S^3 and hence compute, $H(\overline{S^2})$ and $H(\overline{S^3})$.
- 2B. For a discrete memoryless source S with alphabet $S=\{s_i\}, i=1,2,...q$, and probabilities $\{P_i\}, i=1,2,...q$ i=1,2,...,q, prove that $H(S^n) = nH(S)$.
- 2C. Define and explain ergodic and nonergodic Markov source.

$$(5+3+2)$$

An information source produces sequences of independent symbols having the following 3A. probabilities.

А	В	С	D	E	F	G
1/3	1/27	1/3	1/9	1/9	1/27	1/27

- (i) Using Shannon Fano procedure, construct a binary code and determine the efficiency and redundancy of the code.
- For the same source, construct binary and trinary codes using Huffman procedure. (ii) Compute efficiency and redundancy in each case.

- 3B. A source has 6 possible outputs with probabilities as given in the table. Codes A, B, C, D, E and F are considered.
 - (i) Which of these are uniquely decodable?
 - (ii) Which are instantaneous
 - (iii) Determine the average length for all uniquely decodable codes.

Output(si)	P(si)	Α	В	С	D	Ε	F
S1	1/2	000	0	0	0	0	0
S2	1/4	001	01	10	10	10	100
S3	1/4	010	011	110	110	1100	101
S4	1/16	011	0111	1110	1110	1101	110
S5	1/16	100	01111	11110	1011	1110	111
S6	1/16	101	011111	111110	1101	1111	001

3C. A source S has six symbols with probabilities P1 to P6, respectively. Assume that we have ordered the Pi so that $P1 \ge P2 \ge \ge P6$. We wish to find a compact code for this source using the code alphabet $X = \{0, 1, 2, 3\}$. Determine a set of word lengths for such a compact code if P6 = 1/64.

(5+3+2)

- 4A. Encode the message "**MISSISSIP**" generated by a source with 26-letter alphabet (A-Z) using Adaptive Huffman coding.
- 4B. Consider a binary symmetric channel, whose input is the alphabet $X = \{0, 1\}$ with probabilities $\{0.5, 0.5\}$; whose output alphabet is $Y = \{0, 1\}$; and whose channel matrix is

$$\begin{bmatrix} 1-\epsilon & \epsilon \\ \epsilon & 1-\epsilon \end{bmatrix}$$

where ϵ is the probability of transmission error.

- a. Compute H(X), H(Y), H(X, Y) and I(X,Y)
- b. How many values are there for ϵ for which the mutual information of this channel is maximum? What are those values, and what is the capacity of this channel?
- 4C. Calculate the capacity of a binary erasure channel assuming p as the probability of error. (5+3+2)
- 5A. Consider a channel with x₁, x₂, x₃ input symbols and y₁, y₂, y₃ output symbols described by the matrix.

$$P(X,Y) = \begin{bmatrix} 3/40 & 1/40 & 1/40 \\ 1/20 & 3/20 & 1/20 \\ 1/8 & 1/8 & 3/8 \end{bmatrix}$$

- a. Calculate the entropies of X and Y.
- b. Calculate the joint and conditional entropies: H(X,Y), H(X/Y), H(Y/X)
- c. Calculate the average mutual information I(X;Y).

- 5B. For a three variable system, H(Y,Z/X) = 0.43bits/symbol & H(Y,Z)=0.725bits/symbol & H(X)=0.333bits/symbol, compute mutual information of X and (Y,Z) and equivocation of X with respect to Y and Z.
- 5C. Determine the non-systematic Hamming code for the message stream (1001)

(5+3+2)

- 6A. Determine the channel capacity of an r-ary symmetric channel for an overall probability of error p. Also compute the rate of transmission for a quaternary symmetric channel if p=1/3 and symbol rate is 100000 symbols/sec.
- 6B. Define maximum likelihood decision rule. Derive the expression for the probability of error in terms of channel matrix parameters if a priori probabilities are equal.
- 6C. Compute the probability of error of the channel described by its channel matrix as given below, using maximum likelihood decision rule.

$\begin{bmatrix} 0.5 & 0.3 & 0.2 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.3 & 0.4 \end{bmatrix}$

(5+3+2)

