

MANIPAL INSTITUTE OF TECHNOLOGY

LIFE A Constituent Institution of Manipal University

SEVENTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.)

END SEMESTER EXAMINATIONS, DEC 2016/JAN 2017

SUBJECT: LOGIC AND DISTRIBUTED CONTROL SYSTEMS [ICE 413]

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL questions.
- ✤ Missing data may be suitably assumed.

1A.	Develop the flowchart which shows typical operations required to take a data sample	4
	from an ADC.	
1 B .	With neat timing diagram, explain the retentive OFF delay timer.	4
1C.	Draw the typical PLC input and output symbols for following devices.	2
	(i) Mushroom Head. (ii) Liquid Level Switch (iii) Bell. (iv) Flow Switch.	
2A.	Explain the typical PLC – CPU power supply in block diagram form.	4
2B.	In dangerous processes it is common to use two palm buttons that require an operator	3
	to use both hands to start a process. To develop this there are two inputs that must be	
	turned on within 0.25 sec of each other before a machine cycle may begin. Write	
	ladder logic for this dangerous process machine. Write ladder logic for the above.	
2C.	Describe the different types of latching techniques are used in PLCs.	3
3A.	Draw the scan cycle of a PLC and how the self-diagnosis is performed in PLC.	2
3B.	Describe the operation of the eight lines SKIP function in PLC system. (SKIP0046	4
	003).	
3C.	Illustrate the need of PLCs in process control industries with a suitable example.	4
4A.	Describe the Burst mode in HART Communication Protocol.	4
4B.	Write a ladder logic program for the following	4
	i. When button A is pushed, a light will flash for 5 seconds.	
	ii. The flashing light will be on for 0.25 sec and off for 0.75 sec.	
	iii. If button A has been pushed 5 times the light will not flash until the system is	
	reset.	

iv. The system can be reset by pressing button B.

4C. Write the significance of the main control computer in DCS 2 5A. Explain all five general levels in control system of an industrial factory using PLC. 4 **5B**. Explain split range operation of HART protocol and mention the need of isolating 4 amplifier in the HART protocol. 5C. A temperature control system consists of two thermostats with a setting of 400° C 2 and 600° C to activate a heating element. Develop ladder logic and sequential function chart that the temperature should be maintained in between 400° C to 600° C (i.e heating element remain ON up to 600° C in increasing mode and remain OFF up to 400° C in decreasing mode). Write ladder logic for the above. Explain the basic functional requirements of DCS system. 6A. 4 6**B**. Draw the PLC PID instruction and describe the PID controller. 4 6C. Without simplification draw Ladder logic and digital circuit for the following 2 expression

$$Y = \vec{C} \left(\overline{\vec{A} + \left(\overline{\vec{B} \, \vec{C} (\vec{A} + \overline{\vec{B} \, \vec{C}})} \right)} \right)$$
