

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

VII SEMESTER B.TECH. (MECHANICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2016

SUBJECT: REFRIGERATION AND AIR CONDITIONING (MME- 469) REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- Answer ANY FIVE FULL questions.
- Use of Thermodynamics data hand book is permitted.
- Missing data may be suitable assumed.
- 1A. With schematic and T-S diagram, obtain an expression for COP of Bell-Coleman refrigeration cycle when the compression and expansion are polytropic.
- 1B. The ambient conditions for an aircraft cruising at 1000km/hr are 0.35 bar and (05) 15 ° C. The cabin temperature is 25 ° C and turbine exit pressure is 1.06 bar. The pressure ratio of the compressor is 3. Assuming 100% efficiency for compressor and turbine and ideal heat exchangers, determine for simple aircraft system of 20TR capacity, Work requirement and COP. Assume C_p of air as 1.005 kJ/kgK, R for air as 0.287 kJ/kgK.
- **2A.** Explain with neat sketch, working of two stage cascade refrigeration system. **(05)** What are its advantages and disadvantages?
- 2B. A refrigeration plant working on reversed carnot cycle is required to produce (05) 2.5 tonnes of ice per day at 4 ° C from water at 20 ° C. If the temperature range in the compressor is between 25 ° C and 6 ° C, calculate the power required to drive the compressor. Latent heat of ice is 335 kJ/kg and specific heat of ice is 2.1 kJ/kgK and that of water is 4.18 kJ/kgK.
- **3A.** Explain with neat sketch, working of vapour absorption refrigeration system **(05)** using ammonia as a refrigerant. What are the differences between vapor absorption system and vapor compression system?
- 3B. Compare the coefficient of performance of a refrigeration cycle which uses (05) wet compression with that of one which uses dry compression. In both cases use ammonia as the refrigerant, a condensing temperature of 30 ° C, and an evaporating temperature of -20 ° C; assume that the compressors are isentropic and that the liquid leaving the condenser is saturated. In the wet compression cycle the refrigerant enters the compressor in such a condition that it is saturated vapor upon leaving the compressor.

4A.	Show the following processes on the psychrometric chart; (a) Dehumidification of moist air by cooling, (b) adiabatic mixing of two fluids.	(03)
4B.	Write a short note on by-pass factor for cooling coil.	(02)
4C.	Air at 10 $^{\circ}$ C DBT and 8 $^{\circ}$ C WBT is supplied at the rate of $15m^{3}$ /min. It is brought to 20 $^{\circ}$ C DBT and 60% RH by heating and then by adiabatic humidification. Find: (i) Capacity of the heating coil in kW (ii) Surface temperature of the coil if the BF factor is 0.32 (iii) Capacity of the humidifier.	(05)
5A.	Explain the factors affecting comfort air conditioning.	(02)
5B.	Explain the factors affecting optimum effective temperature.	(03)
5C.	A cinema hall of seating capacity 1500 persons has been provided with an air condition plant with the following data. Outdoor conditions are 40 $^{\circ}$ C DBT and 20 $^{\circ}$ C WBT, required indoor conditions are 20 $^{\circ}$ C DBT and 60% RH. Amount of outdoor air supplied is $0.3m^3$ /min/person. The required conditions is achieved by adiabatic humidifying and then by cooling, find: i) The capacity of cooling coil and its surface temperature if BPF is 0.25 ii) The capacity of the humidifier and its efficiency.	(05)
6A.	Discuss the components of cooling load calculation.	(02)
6B.	Obtain an expression for sensible heat gain through building structure of composite wall with air space by conduction.	(03)
6C.	An air conditioning plant is to be designed for a small office for winter conditions: Out-door conditions: $10 ^{\circ}$ C DBT and $8 ^{\circ}$ C WBT, Required indoor conditions: $20 ^{\circ}$ C DBT and 60% RH, Amount of air circulation: $0.3 ^{m^3/min/person}$, Seating capacity of the office: 50 persons, the required condition is achieved first by heating and then by adiabatic humidifying. Find; (i) Heating capacity of the coil in kW and its surface temperature, if the bypass factor of the coil is 0.32 , (ii)Capacity of the humidifier (iii) Humidifier efficiency.	(05)