

Reg.No.

Time: 3 Hours

✓ Answer ANY FIVE full Questions.

✓ Missing data, if any, may be suitably assumed

1A. If $x = \tan(\log y)$, then prove that

$$(1+x^2)y_{n+1} + (2nx-1)y_n + n(n-1)y_{n-1} = 0.$$

B Find a and b such that $\lim \frac{x(1-a\cos x)+b\sin x}{a} - \frac{1}{2}$

1B. Find *a* and *b* such that $\lim_{x \to 0} \frac{x^3}{\sqrt{2}} = \frac{1}{3}$. **1C.** Obtain the reduction formula for $\int_{1}^{\frac{\pi}{2}} \sin^n x dx$; n > 0.

(7 + 7 + 6)

- **2A.** A line makes angles $\alpha, \beta, \gamma, \delta$ with the diagonals of a cube, prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = \frac{4}{3}$.
- **2B.** Show that the curves $r = \frac{a}{1+\cos\theta}$ and $r = \frac{b}{1-\cos\theta}$ a, b>0 intersects orthogonally.

2C. Evaluate
$$\int_{0}^{2a} x^{3} (2ax - x^{2})^{\frac{3}{2}} dx$$
. (7 + 7 + 6)

3A. Find the nature of the series $\frac{\sqrt{2}-1}{3^3-1} + \frac{\sqrt{3}-1}{4^3-1} + \frac{\sqrt{4}-1}{5^3-1} + \dots$

3B. Trace the curve $y^2(a^2 + x^2) = x^2(a^2 - x^2)$; a > 0 with explanation.

- **3C.** Obtain the equation of the sphere having the circle $x^2 + y^2 + z^2 = 9$, x + y + z = 3 as a great circle. (7 + 7 + 6)
- **4A.** Trace the polar curve $r = a \cos 2\theta$, a > 0 with explanation.
- **4B.** Find the equation of the planes bisecting the angle between the planes 3x 4y + 5z 3 = 0 and 5x + 3y 4z 9 = 0. Also, specify the one which bisects the acute angle.
- 4C. Find the coordinates of the center of curvature at any point of the parabola $y^2 = 4ax$. (7 + 7 + 6)

- **5A.** Find the region of convergence of the series $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$.
- **5B.** Find the area of the region to common to the regions enclosed by $r = a(1 + \cos \theta)$ and $r = a(1 \cos \theta)$, a>0.

5C. Prove that
$$\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2}$$
 with usual notations. $(7+7+6)$

- **6A.** Find the entire length of the curve $x = a\cos^3\theta$, $y = a\sin^3\theta$, a>0.
- **6B.** Discuss the nature of the following series. (i) $\frac{1}{6} - \frac{1}{13} + \frac{1}{20} - \frac{1}{27} + \dots$ (ii) $\sum_{n=1}^{\infty} \frac{n}{2n-1} (-1)^n$ **6C.** Expand e^{sinx} in powers of x up to the terms containing x^5 . (7 + 7 + 6)
- **7A.** Find the image of the point (2, -3, 4) with respect to the plane 4x + 2y 4z + 3 = 0.
- **7B.** If $y = \frac{1}{x^2 + a^2}$, then prove that $y_n = \frac{(-1)^n n!}{a^{n+2}} sin^{n+1} \theta sin(n+1) \theta$.
- **7C.** Verify Cauchy's Mean Value Theorem for $f(x) = x^3 3x^2 + 2x$ and $g(x) = x^3 5x^2 + 6x$ in (0, 0.5). (7 + 7 + 6)
- **8A.** Find the length of the shortest distance between the lines $\frac{x-3}{1} = \frac{y-5}{-2} = \frac{z-7}{1}$ and $\frac{x+1}{7} = \frac{y+1}{-6} = \frac{z+1}{1}$. Also find the equation of the line of shortest distance.
- **8B.** State Lagranges's theorem and verify Rolle's Theorem for $f(x) = x(x+3)e^{-0.5x}$ in [-3, 0].
- 8C. Find the equation of the right circular cone whose vertex is the origin, axis is the line $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ and which has semi vertical angle of 30°.

$$(7 + 7 + 6)$$

