Reg. No.

INTERNATIONAL CENTRE FOR APPLIED SCIENCES (Manipal University) II SEMESTER B.S. DEGREE EXAMINATION SUBJECT: ELEMENTS OF BIOMEDICAL ENGINEERING (BM121) (BRANCH: BIOMEDICAL) Wednesday, 3 May 2017

Time	Time: 3 Hours Max. Mar			
\checkmark	Ass	swer ANY FIVE full Questions. sume relevant data if missing. aw diagrams wherever necessary.		
1.	(a)	Simplify the Boolean function using KMap method.	(6)	
		F (A, B, C, D) = $\sum m (0, 2, 3, 4, 6, 8, 10, 11, 12, 14)$		
	(b)	Design an asynchronous decade counter using JK Flipflops.	(8)	
	(c)	Perform the following subtractions using 1's and 2's complements. (i) $11010_2 - 10000_2$ (ii) $11010_2 - 1101_2$ (iii) $100_2 - 11000_2$	(6)	
2.	(a)	With neat diagrams, explain the working of PN diode under forward a biased conditions. Draw and explain its V-I characteristics.	and reverse (7)	
	(b)	What is the major difference between photodiode and LED? Give the c working principle and two applications of LED.	construction, (6)	
	(c)	What is Junction Field Effect Transistor (JFET)? With a neat diagram, construction details and operation.	explain its (7)	
3.	(a)	What is virtual ground with reference to an op-amp? Illustrate.	(4)	
	(b)	What are the characteristics of an ideal operational amplifier?	(6)	
	(c)	Draw an op-amp open-loop and closed loop inverting amplifier circuit expressions for gain of the amplifier in both configurations.	and derive (10)	
4.	(a)	What is bio-metrics? List and explain all essential factors to be conbiomedical instrumentation.	nsidered in (8)	
	(b)	With help of a block diagram explain different components of "man- system.	-instrument" (6)	
	(c)	What is electrode-electrolyte interface? Explain.	(6)	

5.	(a)	Simplify the given expression using Boolean algebra techniques. $[A\overline{B}(C + BD) + \overline{A}\overline{B}]C$	(2)
	(b)	List and explain various bio-potential recording electrodes.	(12)
	(c)	Design a 3-input op-amp summing amplifier with a gain of 1.	(6)
6.	(a)	What is a Flipflop? Give the logic diagram and truth table of a JK Flipflop.	(8)
	(b)	An op-amp inverting amplifier has $R_F = 5K\Omega$, and $R_G = 10K\Omega$. Compute the closed loop gain of the amplifier, and the output voltage, if the input voltage is -3 V.	(5)
	(c)	Realize the following Boolean function using 8x1 MUX.	(7)
		$F(A B C D) = \sum 1, 2, 4, 5, 6, 8, 10, 11, 12, 14$	
7.	(a)	Draw typical electrocardiogram and explain different waves present in it.	(2+6)
	(b)	What is a Half adder? Design a half adder using minimum number of NAND gates.	(5)
	(c)	Design a 4-bit binary adder-subtractor circuit.	(7)
8.	(a)	What is Zener break down? With a neat diagram, describe a reverse biased Zener diode and its reverse characteristics.	(6)
	(b)	With a neat diagram, describe how a NPN transistor is biased. List two important applications of BJT.	(6)
	(c)	How do you make use of Electromyogram to measure sensory nerve conduction velocity?	(8)

##