	Reg. No.									
	INTERNATIONAL CENTRE F (Manipal Un			JED	SCI	EN	CE	S		
II SEMESTER B.S. DEGREE EXAMINATION SUBJECT: INTRODUCTION TO BIOPROCESS ENGINEERING (BT 122)										
ASPIRED BY LIFE	(BRANCH: INDUSTRIAL) Wednesday, 3 N	BIOTE	CHNOL			NG	(DI	122	<i>.</i>)	

Time: 3 Hours

Max. Marks: 100

✓ Answer ANY FIVE FULL Questions.

(A) Explain the mechanism of action an enzyme. Compare the progress of a reaction in the presence and absence of an enzyme, with respect to free energy. Add a short note on proximity effect and orientation effect. [10m]
 (B) What are the approaches devised to derive the velocity of an enzyme-catalyzed reaction? Derive the velocity using Briggs-Haldane approach, mentioning clearly the assumptions made. [10m]
 (A) Derive the Eadie-Hofstee Equation and Hanes-Woolf Equation. Show the plot

graphically, labelling the slope and intercept.[10m](B) What is the accepted international method of enzyme classification? List the subtypes under each of them, as applicable. Name any two biologically-derived products, each: (a) requiring high purity (b) requiring minimum purity.[10m]

3. (A) What is uncompetitive inhibition? If an uncompetitive inhibitor is added to an enzyme-catalyzed reaction, how does it influence the maximum reaction velocity and Michaelis constant? Derive the expression for velocity for such an inhibited reaction. [10m]

(B) Describe the main features of the air-lift reactor. Present a labelled sketch of three configurations of this type of reactor. State two applications of this bioreactor.

[10m]

4. (A) What is the physical significance of cooperativity coefficient? How is it determined graphically? Explain with a diagram. [8m]
(B) Lipase is being investigated as an additive to laundry detergent for removal of stains from fabric. The general reaction is: Fats → Fatty acids + Glycerol The Michaelis constant for pancreatic lipase is 5 mM. At 60°C, lipase is subject to deactivation with a half-life of 8 min. Fat hydrolysis is carried out in a well-mixed

batch reactor which simulates a top loading washing machine. The initial fat concentration is 45 gmol $/m^3$. At the beginning of the reaction the rate of hydrolysis is 0.07 mmol/ L.s. How long does it take for the enzyme to hydrolyze 80% of the fat present? [12m]

- 5. (A) Give four examples of support materials used for immobilizing enzymes by the physical adsorption method. [4m]
 (B) Write short notes on direct and indirect methods of determining cell mass concentration in batch growth of a bacterial specimen. [8m]
 (C) In a competitive inhibition experiment, a structural analog was used along with the substrate and the following kinetics was observed: At 10µM substrate, the velocity was 25 µM/min. With 2mM of the analog, the velocity dropped to 50%. Calculate the K_i of the inhibitor. Given that the substrate concentration used gives half-maximal velocity, calculate how much inhibitor should be used for increasing the K_m to 10 times the uninhibited value? [8m]
- 6. (A) The equation for aerobic production of acetic acid from ethanol is:

 C_2H_5OH (ethanol) + $O_2 \rightarrow CH_3COOH$ (acetic acid) + H_2O

Acetobacter aceti bacteria are added to vigorously-aerated medium containing 10 g/L ethanol. After some time, the ethanol concentration is 2 g/L and 7.5 g/L acetic acid is produced. How does the overall yield of acetic acid from ethanol compare with the theoretical yield? [4m]

(**B**) The following data have been obtained for two different initial enzyme concentrations for an enzyme-catalyzed reaction.

V at [E ₀] = 0.015 g/L	[S]	V at [E ₀] = 0.00875 g/L
(g/L-min)	(g/L)	(g/L-min)
1.14	20.0	0.67
0.87	10.0	0.51
0.70	6.7	0.41
0.59	5.0	0.34
0.50	4.0	0.29
0.44	3.3	
0.39	2.9	
0.35	2.5	
i. Find K _m		
;; Find V for [Fal -	0.015 ~/	

ii. Find V_m for $[E_0] = 0.015$ g/L [4m]

iii. Find V_m for $[E_0] = 0.00875$ g/L [4m]

iv. Find k_2 for both values of [E₀]. [4m]

[4m]

7. (A) Show graphically, the variation of biomass concentration and product concentration with time in (i) growth-associated product formation (ii) mixed-growth-associated product formation. [6m]
(B) If you need to produce 10 g of cells using glucose as a carbon source, what is the minimum amount of glucose that would be needed? Assume cell composition as CH_{1.8} O_{0.5}N_{0.2}. [6m]

(C) A strain of mold was grown in a batch culture on glucose and the following data were obtained.

(i) Calculate the net specific growth rate

[6m] [2m]

(ii) Calculate the growth yield

Time (h)	Cell concentration (g/L)	Glucose concentration (g/L)
0	1.25	100
9	2.45	97
16	5.1	90.4
23	10.5	76.9
30	22	48.1
34	33	20.6
36	37.5	9.38
40	41	0.63

8. (A) State any three applications of enzymes used for medical diagnosis and/or therapeutical purposes.

(B) To measure the amount of glucoamylase in a crude enzyme preparation, 10 mL of the crude enzyme preparation containing 8 mg protein is added to 9 mL of 4.44% starch solution. One unit of activity of glucoamylase is defined as the amount of enzyme which produces 1 μ mol of glucose per min in a 4% solution of Lintner starch at pH 4.5 and 60°C. Initial rate experiments show that the reaction produces 0.6 μ mol of glucose per mL per min. What is the specific activity of the crude enzyme preparation? If V_m = 1 μ mol per mL per min, find k₂. [6m]

(C) Write a brief note on the immobilizing enzymes using ionic and covalent methods.

[8m]

[6m]