

A Constituent Institution of Manipal University

II SEMESTER B.TECH.

END SEMESTER EXAMINATIONS, APR/MAY 2017

SUBJECT: MECHANICS OF SOLIDS [CIE 1001]

REVISED CREDIT SYSTEM (24/04/2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.

1A.	State and prove Varignon's theorem.	02	CO1
1 B .	Find P,Q and C, for the force system shown in the Fig. 1B if the resultant couple is 60N-m anticlockwise	03	CO1
1C.	Find the reactions at the supports A and B for the beam loaded as shown in Fig. 1C	05	CO1
2A.	The uniform pole of length L and weight W is placed against the supporting surfaces shown in Fig. 2A . If the coefficient of friction is 0.25 at both A and B, determine the maximum angle α at which the pole can be placed before it begins to slip.	05	CO1
2B.	Determine second moment of area of the shaded portion shown in Fig. 2B with respect to axis 'AB'.	05	CO2
3A.	A block of size 150mm x 100mm x 75mm is subjected to a force of 50kN compressive on 100mm x 75mm face, 75kN compressive on 150mm x 100mm face and a tensile force of 100kN on 150mm x 75mm face. Find the change in each dimension and change in volume. Take $\mu = 0.3$, $E = 200$ GPa.	05	CO3
3B.	A steel rod of 40 mm diameter is enclosed in a brass tube of 60 mm external diameter and 50 mm internal diameter. Each is 400 mm long and assembly is rigidly held between two plates. The temperature of the assembly is raised by 50°C, determine stresses in tube and rod if one of the plate yields by 0.15 mm. Consider, $E_{br} = 1.05 \times 10^5 \text{ N/mm}^2$, $E_{st} = 2 \times 10^5 \text{ N/mm}^2$; $\alpha_{br} = 21 \times 10^{-6} / ^{\circ} \text{ C}$, $\alpha_{st} = 12 \times 10^{-6} / ^{\circ} \text{ C}$	05	CO3
4A.	A composite bar consist of three segments made up of bronze, steel and aluminium fixed at one end as shown in Fig. 4A Axial loads are applied at the positions indicated. Determine the stresses in each segment and the total deformation. Given $E_{Br} = 100$ GPa , $E_{Al} = 70$ GPa , $E_{St} = 200$ GPa.	05	CO3
4 B .	Derive an expression for the total extension of the tapered bar of circular cross section with d_1 and d_2 as diameters with length 'L', when subjected to an axial tensile load of P.	03	CO3
4C.	Explain the following a) Temperature stress b) Joint efficiency	02	CO3 CO4

5A.	A thin cylindrical shell 1 m in internal diameter, 3m long has metal thickness 10 mm. It is subjected to internal fluid pressure of 3MPa. Determine (i) Change in diameter (ii) change in length (iii) change in volume. Given: $E=210GPa$ and $\mu=0.3$	03	CO4
5B.	Draw SFD and BMD for the beam shown in Fig. 5B. Locate the point of contraflexure if any.	07	CO5

