Dog No					
Reg. No.					

II SEMESTER M.Tech. (BME) DEGREE MAKE UP EXAMINATIONS, 2017 SUBJECT: PATTERN RECOGNITION (BME 5237)

(REVISED CREDIT SYSTEM)
Tuesday, 13th June 2017, 9 AM to 12 NOON

TIME: 3 HOURS MAX. MARKS: 100

Instructions to Candidates:

- 1. Answer ALL questions.
- 2. Draw labeled diagram wherever necessary

1.	(a)	Consider the set of feature vectors for two classes $C_1 = \begin{bmatrix} 1 & 1 & 2 & 1 & 3 \\ 0 & 1 & 2 & 2 & 2 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 2 & 2 & 3 & 4 & 4 \\ 0 & 1 & 1 & 1 & 2 \end{bmatrix}$. The density function defined on these samples is given by $p(x \theta) = \theta x^{(\theta-1)}$ Estimate the parameter θ associated with each class using the Maximum Likelihood method. Plot the posterior densities pertaining to C_1 and C_2 , and the decision surface when $P(C_1) = P(C_2) = 0.5$. List the number of misclassification.	(10)
	(b)	Explain the Pattern Recognition System with a neat block diagram.	(10)
		Zapani ine i attem recognition system with a near stock diagram.	(10)
2.	(a)	Consider the set of feature vectors for two classes $C_1 = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 2 & 2 & 2 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 2 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \end{bmatrix}$. Calculate the optimum direction \boldsymbol{v} to project classes using Fisher Linear Discriminant Analysis. Illustrate this procedure on a scatter plot. Are these projected classes well separated? Explain.	(10)
	(b)	Consider a two class problem having three independent binary features with known feature probabilities: $p_1 = p_2 = 0.7$, $p_3 = q_1 = q_2 = q_3 = 0.7$. Find the Bayesian decision rule and find the classes if $P(C_1) = P(C_2)$. Justify this decision (explain how each feature contributes towards right decision). Provide a graphical representation of these classes along with the decision surface.	(10)
3.	(a)	Design the decision surface between the three classes ω_1 , ω_2 and ω_3 having the corresponding linear discriminant functions as: $g_1(X) = -2x_1 - 0.75x_2 + 10.25$,	(10)

BME 5237 Page 1 of 2

		$g_1(X) = 2x_1 - 0$ regions pertainin						_	_	
		regions pertunin	g to these	Classes	. Classify	the unkn	own samp.	16 x - 1 ₄	.5J·	
	(b)	Construct a single output perceptron with updated weights for the given inputs $[x_1 \ x_2]$ and the desired outputs y as shown in Table 1. Use $\eta = 0.2$, $W(0) =$								(10)
		$\begin{bmatrix} x_1 & x_2 \end{bmatrix}$ and the desired outputs y as shown in Table 1. Use $\eta = 0.2$, $W(0) = \begin{bmatrix} -1.2 \\ -0.3 \\ 0.7 \end{bmatrix}$. Draw the scatter plot along with the decision surface.								
		Table 1								
			x_1	1	2	2	3			
			x_2	2	1	3	2			
			у	1	0	1	0			
					<u>'</u>	<u> </u>	<u> </u>			
4.	(a)	Consider two classes with set of feature vectors as: $C_1 = \begin{bmatrix} 1 & 6 & 8 & 11 \\ 8 & 7 & 5 & 4 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 1 & 6 & 8 & 11 \\ 8 & 7 & 5 & 4 \end{bmatrix}$								(10)
		$\begin{bmatrix} 2 & 3 & 6 & 11 \\ 4 & 3 & 2 & 1 \end{bmatrix}$. Design the decision surface using Perceptron criteria, with $\eta = 0.2$, and $W(0) = \begin{bmatrix} -9.98 \\ 0.52 \\ 1.15 \end{bmatrix}$. Draw the scatter plot with decision surface classifying these classes.								
	(b)	Consider two classes C_1 and C_2 , if class conditional densities are normally distributed with covariance matrices $\sum_i = \sum$ (Arbitrary but same covariance), for $i = 1,2$. Derive and explain the discriminant function for minimum error rate classification.								
			d explaii	n the	discrimina	ant funct		ninimum		(10)
		classification.				ant funct		ninimum		(10)
5.	(a)	classification. Consider the set	of feature	sample	es		ion for n		error rate	(10)
5.	(a)	Consider the set	of feature	sample C	es D	Е	ion for n	G	error rate	
5.	(a)	Consider the set	of feature 3 .5	sample C 2	es D 3	E 4	F 5	G 7	H 9	
5.	(a)	Consider the set	of feature 3 .5 .5	e sample C 2	D 3 2	E 4 3	F 5 -1	G 7 1	H 9 1	
5.	(a)	Consider the set	of feature 3 .5 .5 helor and	sample C 2 2 Wilkin	es D 3 2 1's clusteri	E 4 3 ing Algor	F 5 -1 ithm. Ident	G 7 1 ify three o	H 9 1 clusters for	
5.	(a)	Consider the set	of feature 3 .5 .5 helor and	sample C 2 2 Wilkin	es D 3 2 1's clusteri	E 4 3 ing Algor	F 5 -1 ithm. Ident	G 7 1 ify three o	H 9 1 clusters for	

BME 5237 Page 2 of 2