Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

II SEMESTER M.Tech. (BME) DEGREE MAKE-UP EXAMINATIONS, 2017 SUBJECT: PATTERN RECOGNITION (BME 5237) (Elective II) (REVISED CREDIT SYSTEM) Tuesday, 13th June 2017, 9 AM to 12 NOON

TIME: 3 HOURS

MAX. MARKS: 100

Instructions to Candidates:

1. Answer ALL questions.

2. Draw labeled diagram wherever necessary

1.	(a)	Consider the set of feature vectors for two classes $C_1 = \begin{bmatrix} 1 & 1 & 2 & 1 & 3 \\ 0 & 1 & 2 & 2 & 2 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 2 & 2 & 3 & 4 & 4 \\ 0 & 1 & 1 & 2 \end{bmatrix}$. The density function defined on these samples is given by						
		$p(x \theta) = \theta x^{(\theta-1)}$						
		Estimate the parameter θ associated with each class using the Maximum Likelihood method. Plot the posterior densities pertaining to C_1 and C_2 , and the decision surface when $P(C_1) = P(C_2) = 0.5$. List the number of misclassification.						
	(b)	Explain the Pattern Recognition System with a neat block diagram.	(10)					
2.	(a)	Consider the set of feature vectors for two classes $C_1 = \begin{bmatrix} 1 & 2 & 1 & 3 \\ 0 & 2 & 2 & 2 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 2 & 2 & 3 & 4 \\ 0 & 1 & 1 & 1 \end{bmatrix}$. Calculate the optimum direction \boldsymbol{v} to project classes using Fisher Linear Discriminant Analysis. Illustrate this procedure on a scatter plot. Are these projected classes well separated? Explain.	(10)					
	(b)	Consider a two class problem having three independent binary features with known feature probabilities: $p_1 = p_2 = 0.7$, $p_3 = q_1 = q_2 = q_3 = 0.7$. Find the Bayesian decision rule and find the classes if $P(C_1) = P(C_2)$. Justify this decision (explain how each feature contributes towards right decision). Provide a graphical representation of these classes along with the decision surface.	(10)					
3.	(a)	Design the decision surface between the three classes ω_1, ω_2 and ω_3 having the corresponding linear discriminant functions as: $g_1(X) = -2x_1 - 0.75x_2 + 10.25$, $g_1(X) = 2x_1 - 0.75x_2 + 10.25$ and $g_1(X) = 0.75x_2 + 2.25$. Plot and identify the regions pertaining to these classes. Classify the unknown sample $x' = \begin{bmatrix} 5 \\ 4 \\ 5 \end{bmatrix}$.	(10)					
		BME 5237 Page 1 of 2						

	(b)	Construct a single output perceptron with updated weights for the given inputs									
		$[x_1 x_2]$ and the desired outputs y as shown in Table 1. Use $\eta = 0.2$, $W(0) =$									
		$\begin{bmatrix} -1.2 \\ -0.3 \\ 0.7 \end{bmatrix}$. Draw the scatter plot along with the decision surface.									
		Table 1									
			<i>x</i> ₁	1	2	2	3				
			<i>x</i> ₂	2	1	3	2				
			У	1	0	1	0				
4.	(a)	Consider two classes with set of feature vectors as: $C_1 = \begin{bmatrix} 1 & 6 & 8 & 11 \\ 8 & 7 & 5 & 4 \end{bmatrix}$ and $C_2 = \begin{bmatrix} 1 & 6 & 8 & 11 \\ 8 & 7 & 5 & 4 \end{bmatrix}$									
		$\begin{bmatrix} 2 & 3 & 6 & 11 \\ 4 & 3 & 2 & 1 \end{bmatrix}$. Design the decision surface using Perceptron criteria, with $\eta = 0.2$, and $W(0) = \begin{bmatrix} -9.98 \\ 0.52 \\ 1.15 \end{bmatrix}$. Draw the scatter plot with decision surface classifying these classes.									
	(b)	Consider two classes C_1 and C_2 , if class conditional densities are normally distributed with covariance matrices $\sum_i = \sum$ (Arbitrary but same covariance), for $i = 1,2$. Derive and explain the discriminant function for minimum error rate classification.									
5.	(a) Consider the set of feature samples									(10)	
		A	B	C	D	E	F	G	Н		
		0	0.5	2	3	4	5	7	9		
		U Exploin the P	0.5 Potobolor and	2 Willkin's	2 alustoring	3 Algorithm	-l	l u throo a	luctors for		
	given set of feature samples by taking vector A as one of the cluster center.										
	(b)	Explain Graph based clustering using the Minimal Spanning Tree algorithm for the feature samples from question 5(a) and extract three clusters by taking 'A' t be the root node.									