Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (CHEMICAL ENGINEERING)

END SEMESTER MAKEUP EXAMINATIONS, JUN/JUL 2017

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-II [CHE 2201]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

✤ Answer ALL questions.

✤ Missing data, if any, may be suitably assumed.

1Δ	Determine the fugacity of a component at 150°C and 100 bar from the given data.								11
	P, bar	10	20	40	60	80	100		
	Ζ	0.985	0.970	0.942	0.913	0.885	0.869		
1B.	The molar enthalpy of a component in a binary solution is given by the relation								09
	$H = (0.01x_1x_2)(3x_1 + 5x_2)$								
	Where H is in J/mol. Determine $\overline{H_1}$ as function of x_2 and the numerical values of the								
	pure component enthalpy H_1 .								
2A.	Check whe	ther the for $\frac{1}{2}$	ollowing e	quations sa	tisfy Gibbs	s- Duhem e	equations.		10
	$ln\gamma_1 = Ax_2^2$	$5 + B\chi_2^2$	$5x_1 - x_2$						
	$m\gamma_2 - A\lambda_1$	$[\pm Dx_1 ($	$x_1 - 3x_2$						
20	For a mixtu	ure of ace	tic acid a	nd toluene	containing	, 0.486 mo	le fraction	toluene, the	06
ZD .	partial pres	sures of a	acetic acid	and tolue	ne are four	nd to be 0.	118 bar and	d 0.174 bar	00
	respectively	y at 343 H	K. The vap	pour pressu	ires of pur	e compone	ents at this t	temperature	
	are 0.269 t	par and 0	.181 bar 1 aid is 0.55	tor toluene	and aceti	c acid resp	ectively. T	he Henry's	
	constant for acetic acid is 0.55 bar. Calculate the activity and activity coefficient for acetic acid in the mixture								
	(i) Based on Lewis –Randall rule.								
	(ii)	Based on	Henry's la	aw.					
							<u>a</u>		
2C.	Derive the	expression	n for the e	ffect of pre	ssure on ac	ctivity coef	ficient.		04
2 4	Discuss the	step by s	step procee	dure for the	e construct	ion of P-x-	y diagram,	for an ideal	na
3A.	solution hav	ving two o	componen	ts.					03
3B.	Explain pos	sitive and	negative d	leviation fr	om ideality	y with the h	elp of P-x-	y diagram.	06

3C.	The vapour pressures of acetone (1)- acetonitrile (2) is given by Antoine equations. $lnP_1^s = 14.5463 - \frac{2940.46}{T-35.93}$ $lnP_2^s = 14.2724 - \frac{2945.47}{T-49.15}$ where T is in K and P is in kPa. Assuming the solutions formed are ideal. Calculate T and y_1 at 65 kPa and x_1 =0.4							
4A.	Verify whet x_1 γ_1	her the follo 0 0.576	0.2 0.655 0.985	are consisten 0.4 0.748	t by zero are 0.6 0.856	ea method. 0.8 0.950	1.0 1.00 0.379	10
4B.	 From VLE measurements for ethanol-benzene system at 318 K and 40.25 kPa, it is found that the vapour in equilibrium with a liquid containing 38.4% (mol) benzene contained 56.6% (mol) benzene. The system forms an azeotrope at 318 K. At this temperature the vapour pressures of ethanol and benzene are 22.9 and 29.6 kPa respectively. Determine the composition and total pressure of the azeotrope. Assume that van Laar equation is applicable for the system. 							
5A.	A gas mixture containing 25% CO, 55% H ₂ and 20% inert gas is to be used for methanol synthesis. The gases are passed to a catalyst chamber where the following reaction takes place $CO(g) + 2H_2(g) \rightarrow CH_3OH(g)$ at a pressure of 300 bar and temperature of 625 K. Assume that the equilibrium mixture forms an ideal solution and k_f and k_{ϕ} are 4.9×10^{-5} and 0.35 respectively. What are the composition of all the components?							
5B.	For the vapour phase hydration of ethylene to ethanol according to the reaction $C_2H_4 + H_2O \rightarrow C_2H_5OH$ the standard heat of reaction at 298 K is -45.95×10^3 J and the equilibrium constant at 298 K is 14.86 The specific heat data is as follows. $\hline C_p, J/\text{mol K}$ Ethylene $11.886 + 120.12 \times 10^{-3}T - 36.649 \times 10^{-6}T^2$ Water $30.475 + 9.652 \times 10^{-3}T + 1.189 \times 10^{-6}T^2$ Ethanol $29.358 + 166.9 \times 10^{-3}T - 50.09 \times 10^{-6}T^2$ Calculate the values of integration constants.							08
5C.	List out the assumptions used for the establishment of vapour-liquid equilibrium in ideal solutions.							02