		Reg. No.										
--	--	----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IV SEMESTER B.TECH (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, APR/ MAY 2017

SUBJECT: CHEMICAL ENGINEERING THERMODYNAMICS-II [CHE 2201]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 100

Instructions to Candidates:

✤ Answer ALL questions.

✤ Missing data, if any, may be suitably assumed.

1 ^	Calculate the fugacity of a component at 800 bar from the following data at 273 K.									
1.4.	P, bar	50	100	200	400	800	1000		09	
	Ζ	0.9846	0.9846	1.0365	1.2257	1.7959	2.0641			
1B.	Give the definition of chemical potential.									
1C.	The molar volume of a binary solution at constant T and P is given by the relation $V = 120x_1 + 70x_2 + (15x_1 + 8x_2)x_1x_2$								09	
	where V is in m^3/mol . Determine the expression for $\overline{V_2}$ as a function of x_2 and get									
	the value of $\left(\frac{d\overline{V_2}}{dx_2}\right)_{x_2=1}$.									
2A.	The activity coefficient of component 1 in a binary solution is given by								07	
	$ln\gamma_1 = ax_2^2 + bx_2^3 + cx_2^4$									
	Where a, b and c are constants independent of concentrations. Obtain an expression									
	for γ_2 in terms of x_1 .									
2B.	(i) Raoult's law is a simplified form of Lewis-Randall rule. Justify the statement.								06	
	(ii) Distinguish between ideal gaseous mixture and ideal gaseous solution.									
20	Derive the different forms of Gibbs-Duhem equation.								07	
20.									07	
34	Assuming that 2-propanol (1) and 1-propanol (2) forms an ideal solution, predict the								08	
0/ 11	P-x-y data (any 3 set of data) at 90°C.									
	Given the Antione's constants for the components.									
	A D	1 (1)	A		B		C			
	2-Propan	$\frac{\mathrm{ol}\left(1\right)}{1}$	8.87829		2010.330		252.636			
	1-Propan	ol (2)	8.37895		1788.020		227.438			
3B.	Explain maximum boiling azeotrope, with the help of phase diagrams.								07	

3C.	Discuss the effect of increasing pressure on the boiling point diagram.								
4A.	Calculate the constants van Laar constants A and B from the following data. Check whether the data are consistent by mid-point method.								
	x_1 0.28 0.40 0.60 0.675 y_1 0.420 0.516 0.656 0.710								
	T, K 331.5 330.4 329.3 328.3								
	P_1^s kPa 109.16 104.77 101.17 97.70								
	P_2^{s} , kPa 77.17 73.44 69.98 67.04 Assume P = 101.3 kPa. 69.98 67.04 69.98 67.04								
4B.	Ethanol- water mixture forms an azeotrope boiling at 351.4 K under a pressure of 101.3 kPa and its composition is 89.4% (mol) ethanol. The vapour pressures of ethanol and water at 351.4 K are 100 kPa and 44 kPa respectively. Using the van Laar equation, calculate the van Laar constants and calculate the activity coefficients of the components in a solution containing 80% ethanol.								
5A.	The equilibrium constant at 298 K for the vapour phase hydration of ethylene to ethanol according to the reaction $C_2H_4 + H_2O \rightarrow C_2H_5OH$ is 14.86 and the equilibrium constant at 420 K is 6.8×10^{-2} . The specific heat data is as follows.								
	c _p , J/mol K								
	Ethylene $11.886 + 120.12 \times 10^{-3}T - 36.649 \times 10^{-6}T^2$								
	Water $30.475 + 9.652 \times 10^{-3}T + 1.189 \times 10^{-6}T^2$								
	Ethanol 29.358 + 166.9 × $10^{-3}T - 50.09 \times 10^{-6}T^2$								
	Determine the values of integration constants.								
5B.	A gas mixture consisting of 60% H ₂ , 20% N ₂ , and the rest inert gas is passed over a suitable catalyst for the production of ammonia								
	$\frac{1}{2} N_2 + \frac{3}{2} H_2 \rightarrow NH_3$								
	The equilibrium constant is $k = 1.25 \times 10^{-2}$. The pressure is maintained at 50 bar. Assume ideal gas behavior for the gas mixture. Determine the values of mole fractions of all the components. Discuss on the effect of adding inert gas in the feed mixture.								