

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

IV SEMESTER B.TECH. (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, APRIL/MAY 2017

SUBJECT: BASIC REINFFORCED CONCRETE DESIGN [CIE 2203]

REVISED CREDIT SYSTEM

(/ /2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.
- ♦ Usage of **IS :456 -2000** and **SP-16** is permitted.
- ✤ Use Limit State Method of Design unless specifically mentioned

1A.	A beam is 250 mm wide and 550 mm effective depth, calculate the design constants, if M 20 grade concrete and Fe 415 grade steel is used. (Use working stress method)	04
1B.	A rectangular beam has a cross section $300 \text{ mm} \times 550 \text{ mm}$. It is reinforced with 4 bars of 20 mm diameter on its tension side and 2 bars of 16 mm diameter on compression side. Calculate the moment of resistance of the section. Use M 25 grade concrete and Fe415 grade steel. Effective cover for both compression and tension side is 45 mm. (Use working stress method)	06
2A.	A simply supported beam of 230 mm wide and 550 mm effective depth is reinforced with 3 bars of 20 mm diameter on the tension side. Calculate the safe UDL including the self-weight over a span of 5 m . The materials used are M 20 grade concrete and Fe 415 grade steel.	04
2B.	Calculate the moment of resistance of a T-beam with a slab thickness of 120 mm , effective flange width of 2500 mm , breadth of web is 230 mm and effective depth of the beam is 600 mm . It is reinforced with 3 bars of 16 mm diameter on the tension side. The materials used are M 20 grade concrete and Fe 415 steel.	06
3A.	Differentiate between under reinforced and over reinforced beam sections	02
3B.	A rectangular beam section of size 250X650mm overall depth is subjected to a factored bending moment of 55 kN-m, factored shear force of 50 kN and factored torsional moment of 25 kN-m. Design the torsion reinforcement, use M 20 grade concrete and Fe 415 steel. The exposure condition is moderate.	08
4.	Design a two-way slab for a room measuring 4mX6m supported on brick masonry wall width of 230 mm . The slab is restrained at the corners and two short edges are dis-continuous. The live load on slab is 2.5kN/m² and floor finish of 1 kN/m² . Do all necessary checks as per IS:456 2000. Adopt M 20 grade concrete and Fe 415 grade steel. Consider moderate exposure condition and Sketch the reinforcement details.	10

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

5A.	Design a short column of size 350mmx650mm subjected to a factored load of 2000kN and bending moment of 250kN-m about major axis. The materials are M 25 grade concrete and reinforcement of grade Fe 415 .	04
5B.	A simply supported rectangular beam of $300 \text{ mm} \times 550 \text{ mm}$ overall depth is reinforced with 4 bars of 16mm diameter as main reinforcement at tension face with an effective cover of 40mm. The hanger bars are 2 numbers of 12mm diameter at the compression face and bending moment applied on the beam is 160kN-m at working condition. Assuming M 40 concrete and Fe 415 steel, compute crack width at a point which is on the tension edge below the bar. Es = 200GPa. (Use working stress method)	06