MANI MANIPAL

MANIPAL INSTITUTE OF TECHNOLOGY

IV Semester B.Tech. (Civil Engineering) End Semester Examinations, April 2017

Subject: Engineering Mathematics IV [MAT 2205]

Revised Credit System

Time: 3 Hours

(24/04/2017)

MAX. MARKS: 50

	Instructions to Candidates:								
	 Answer ALL the questions. 								
	 Missing data may be suitably assumed. 								
1A.	Solve the partial differential equation $\nabla^2 u = -10(x^2 + y^2 + 10)$ over the								
	square with sides $x = 0 = y$, $x = 3 = y$ with $u = 0$ on the boundary and								
	mesh length $h=1$								
1B.	Suppose that a random variable X has probability density function								
	$f(x) = \frac{1}{2}e^{- x }, -\infty < x < \infty$. Find the moment generating function of								
	X and hence find its mean.								
1C.	By the method of least squares, find the parabola $y = a + bx + cx^2$ that fits best for the following data:								
			ing uutu.	1	2	3	4		
	<i>y</i>	1		1.8	1.3	2.5	6.3		
								3M	
2A.	Define the feasible solution of Linear Programming problem. Using Simplex method, Maximize $Z = 7x_1 + 5x_2$ Subject to, $2x_1 + x_2 \le 100$, $4x_1 + 3x_3 \le 240$,								
	$\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \geq 0.$								
D	Compage that V is suffermely distributed arrow (1, 1) Eind the arrow (1, 1)'								
2 D .	density function of $Y = 4 - X^2$.								
2C.	Derive Euler's equation in the form $\frac{\partial f}{\partial y} - \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$							3M	
3A.	Explain th	ne standar	d form	of Linear P	rogramming	problem.			
	Solve by the graphical method: Maximize $z = 5x + 4y$, subject to the								
	constraints, $6x + 4y \le 24$; $x + 2y \le 6$; $-x + y \le 1$; $x, y \ge 0$.								
								4M	

3B.	Show that Poisson distribution as a limiting form of Binomial distribution	3 M				
3C.	In a normal distribution 31% of the items are under 45 and 8% are over 64. Find mean and standard deviation of the distribution					
4A.	Solve $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, $0 < x < 1$, $t > 0$, $u(x, 0) = \sin \pi x$, $u(0, t) = u(1, t) = 0$.					
	Compute <i>u</i> for four time steps with $h = 0.2$. Use Schmidt's method.	4 M				
4B.	Find the curves on which the functional $\int_{0}^{1} \left[(y')^{2} + 12xy \right] dx$ with $y(0) = 0$					
	and $y(1) = 1$ can be extremised.	3 M				
4C.	• Solve by finite difference method: $x^2y'' + xy' + (x^2 - 3)y = 0$					
	with $y(1) = 0$, $y(2) = 2$, and $h = 0.25$.	3 M				
5A.	. Solve by Crank-Nicolson's scheme,					
	$\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}, \ 0 < x < 1, \ t > 0 \text{with}$					
	u(x, 0) = 0 = u(0, t), u(1, t) = 100t.					
	Compute u for one time step with $h = \frac{1}{4}$.	4 M				
5 B .	State Central limit theorem. A sample of size 5 is obtained from a random					
	variable with distribution $N(12, 4)$. Find the probability that the sample					
	mean exceeds 13.	3M				
5C.	Suppose X is binomially distributed with parameters \mathbf{n} and \mathbf{p} , find the mean and variance of binomial distribution	3 M				
