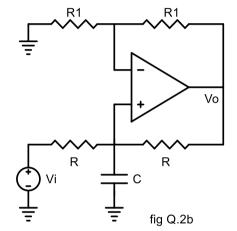
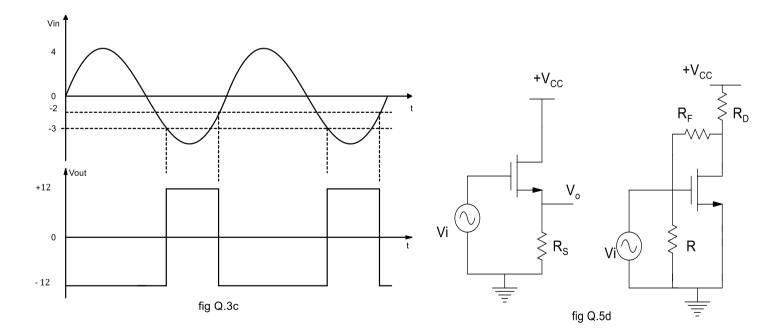
Reg. No.

IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, APRIL - MAY 2017


ANALOG SYSTEM DESIGN [ELE2204]


REVISED CREDIT SYSTEM

Max. Mark	ks: 50
	(03)
n a circuit to) kΩ between	(04)
e that can be ne frequency	(03)
f 3 op-amp to difference	(04)
time domain.	(03)
$2\sin 4000\pi t$	(03)
$\sin 2000\pi t +$ of $Vo(t) =$ onse and the justifies the	(05)
ave precision	(02)
vn in fig Q3c. cted between	(03)
ar waveform	(03)
ith 50% duty	(03)
o]] ne f f to si o o o u i j av vn c t t	kΩ between that can be a frequency 3 op-amp o difference me domain. 2 sin 4000 πt + f Vo(t) = nse and the justifies the ve precision in fig Q3c. ed between r waveform

4C.	Design a 555 timer based circuit which can produce a pulse of 8ms along with the trigger circuit. Assume capacitors of 0.01μ F if required.	(04)
5A.	Draw the equivalent circuit of a voltage Amplifier. What conditions must be satisfied if this amplifier is to behave ideally?	(02)
5B.	Derive expressions for input and output Resistances with feedback for a Transconductance Amplifier.	(03)
5C.	With a neat circuit diagram, discuss the working of Opamp based voltage controlled Oscillator.	(03)
5D.	Identify the feedback topology of the circuits shown in fig Q5d and determine the value of β if R _S =1K, R _D =5K, R _F =100K, R=10K.	(02)

 $\begin{array}{c}
1 \text{ k}\Omega \\
4 \text{ k}\Omega \\
\hline \\
4 \text{ k}\Omega \\
\hline \\
4 \text{ k}\Omega \\
\hline \\
6 \text{ k}\Omega \\
\hline \\
6$

