Reg. No.

IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING MAKE UP EXAMINATIONS, JUNE 2017

SUBJECT: DIGITAL SYSTEM DESIGN & COMPUTER ARCHITECTURE [ELE 2203]

REVISED CREDIT SYSTEM

Time	: 3 Hours	Date: 19 June 2017	Max. Mark	ks: 50
Instructions to Candidates:				
	✤ Answer A	ALL the questions.		
	Missing	data may be suitably assumed.		
1A.	With example	e write the difference between		
	always state	ment and initial statement		(02)
1B.	Write a Veril multiplexers	log HDL code to design a 3 bit gray to binary code converter us and residual gates	sing 4 to 1	(05)
1C.	Consider a fu	nction f1 (a,b,c)= $\prod M(1,2,4,7)$. Show how it can be realized using PL	A	(03)
2A.	Discuss the difference wi	difference between behavioral model and dataflow model. Illu th the help of Verilog HDL code for the Figure Q2A, by writing in both	strate this 1 the ways.	(05)
2B.	Briefly explai	n the any three datatypes used in Verilog HDL, with examples		(02)
2C.	Write a short	note on Anti-fuse based programming technology		(03)
3A.	Write behavio	oral Verilog code for the ASM chart shown in Figure Q3A		(05)
3B.	Write a Veril Verilog code	og code for JK flip flop. Using this flip fop as an instance, Write a for a 3 bit UP counter	structural	(05)
4A.	Which are the	e dedicated registers of general computer system. What are their tas	xs?	(03)
4B.	Perform -40(1	$_{(0)}$ *60 ₍₁₀) using Modified Booth's algorithm.		(04)
4C.	With a neat d	iagram, explain briefly the priority handling concept of Daisy Chain I	nterrupts.	(03)
5A.	Given below section and th Decla Decla	is the register transfer description of a certain control unit. Draw ne state diagram, re registers: A[4],B[4],C[4],D[4],Q[4]; re buses : In bus [4] outbus[4];	processing	
	Start	:: A←0100 ,D←0,B← In bus; C←In bus, Q←In bus; /* Content of B,C & Q are Positive */		
	Loop	1: $D \leftarrow B+C$; If $D=0$ go to loop2; $A \leftarrow A-1, Q \leftarrow Q-1$, If $Q <>0$ go to loop1;		
	Loop2	2: Outbus←D;		
	Halt:	Go to Halt		(04)

- **5B.** Assume a main memory has 4 page frame & assume initially all pages are empty. Consider following stream of page request 1,2,3,4,5,1,2,6,1,2,3,4,5,6,5. Determine the hit ratio for FIFO and LRU replacement policy.
- 5C. List the different type of mapping technique used between main memory and cache memory?Explain each of them clearly indicating tag field Size (04)

Figure Q2A

Figure Q3A

(02)