Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY

IV SEMESTER B.TECH. (EEE/ICE)

END SEMESTER EXAMINATIONS, APR/MAY 2017

SUBJECT: ENGINEERING MATHEMATICS [MAT 2208]

REVISED CREDIT SYSTEM

19/04/2017

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	If $P(A) = \frac{1}{3}$, $P(AUB) = \frac{1}{2}$, find $P(\overline{B})$ and $P(\overline{A}/\overline{B})$ in the following cases. (i) A and B are mutually exclusive (ii) A and B are independent.	4
1B.	If X has the pdf $f(x, y) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & elsewhere \end{cases}$. Find the pdf of $Y = -2\log X$.	3
1C.	Solve $y''+8y\sin^2 \pi x = 0$ with $y(0) = y(1) = 1$ for n=3.	3
2A.	If the joint pdf of X and Y is given by $f(x, y) = \begin{cases} k(x^2 + \frac{xy}{3}), & 0 < x < 1 0 < y < 2\\ 0, & elsewhere \end{cases}$ Find the (i) the value of k (ii) $P\{Y < X\}$ (iii) $P\{Y < \frac{1}{2}/X < \frac{1}{2}\}$	4
2B.	Solve by Explicit method for four time steps: $32 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, 0 <x<1, <math="">t \ge 0, $u(x,0) = 0$, $u(0,t) = 0$, $u(1,t) = t$ with $h = \frac{1}{4}$ and $\lambda = \frac{1}{3}$</x<1,>	3
2C.	From a bag of 10 items containing 3 defectives, a sample of 4 is drawn at random, without replacement. If X denotes the random variable of the number of defective items in the sample, find (i) cdf of X (ii) $P\{X \le 1\}$.	3

	Reg. No.	
	MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A Constitutent Institution of Manipal University	
3A.	In a bombing action, there is 50% chance that any bomb will strike the target. Two direct hits are needed to destroy the target completely. How many bombs are required to be dropped to give a 99% chance or better of completely to destroy the target?	4
3B.	Find the Z transform of the following: (i) ne^{-an} (ii) $\sin^3 n\theta$.	3
3C.	Solve the difference equation $y_{n+2} - 4y_{n+1} + 4y_n = \frac{n^2 2^n}{3}$.	3
4A.	Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$, 0 <x<1, <math="">t \ge 0, $u(x,0) = 100 \sin \pi x$, $u(0,t) = 0 = u(1,t)$, $\frac{\partial u}{\partial t}(x,0) = 0$. Compute u for four time steps with $h = \frac{1}{4}$.</x<1,>	4
4B.	For a certain binary communication channel, the probability that a transmitted zero is received as zero is 0.95 and the probability that a transmitted one is received as one is 0.90. If the probability that a zero is transmitted is 0.4, find the probability that a one was transmitted given that a one was received.	3
4C.	An electronic device has a life length T which is exponentially distributed with parameter $\alpha = 0.001$. Suppose that 100 such devices are tested yielding $T_1, T_2, T_3, \dots, T_{100}$. What is the probability that $950 < \overline{T} < 1100$?	3
5A.	Using Z transforms solve the system of difference equations, $x_{n+1} - y_n = 1$ and $y_{n+1} + x_n = 0$ with $x_0 = 0, y_0 = -1$.	4
5B.	Find the mgf of uniform distribution in (-a, a) and hence find $E(X^{2n})$.	3
5C.	With usual notation, prove that $\rho_{ZW} = \pm \rho_{XY}$ if $Z = aX + b$ and $W = cY + d$, where a, b, c, d are constants.	3
