

IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKEUP EXAMINATIONS, JUNE 2017

SUBJECT: SIGNALS AND SYSTEMS [ELE 2201]

REVISED CREDIT SYSTEM

Time: 3 Hours Date: 14 JUNE 2017 Max. Marks: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.
- Transform Table may be supplied.
- **1A.** Given the sequence $x[n] = \begin{cases} -3, 1, 2, -1, 3, 2 \\ 0 \end{cases}$, sketch and label carefully each of the following signals (a) x[2-n]; (b) x[2n+2]; (c) $x[n+1]\delta(n+2)$
- **1B.** Determine whether the following signal is energy or power signal and also find the energy and power of the signal $x(t) = e^{-2|t|}$ (03)
- **1C.** The input to a continuous-time LTI system is x(t) whose impulse response is h(t). Find the response of the system y(t) = x(t) * h(t), where x(t) = u(t) u(t-3) and h(t) = u(t) u(t-2)
- Check whether the following time signal is periodic. If periodic determine the fundamental period. (i) $x(n) = 3e^{j\frac{2}{3}\pi\left(n+\frac{1}{3}\right)}$ (ii) $x(t) = \sin\left(\frac{\pi}{7}t\right).\cos\left(\frac{\pi}{3}t\right)$
- **2B.** Find the response of LTI discrete time system using convolution sum y(n) = x(n) * h(n). Given $x(n) = \alpha^n u(n); \quad h(n) = \begin{cases} 1; & \text{for } 0 \le n \le 9 \\ 0 & \text{; otherwise} \end{cases}$ and $|\alpha| < 1$
- **2C.** Determine the overall impulse response h(n) of LTI system shown Fig.Q2C. The unit sample response of subsystems are: $h_1(n) = \alpha^n u[n]$; $h_2(n) = u[n-2]$ and $h_3(n) = u[n-3]$. (03)
- **3A.** Find the trigonometric Fourier series for the periodic square wave signal x(t) shown in Fig. Q.3A and sketch the amplitude spectrum. (04)

ELE 2201 Page 1 of 2

3B. Obtain the forced response of a discrete time L.T.I system that is described by the difference equation:
$$y[n] - \frac{1}{4}y[n-1] - \frac{1}{8}y[n-2] = x[n] + x[n-1]$$
; Given $x[n] = \frac{1}{2}u[n]$ (03)

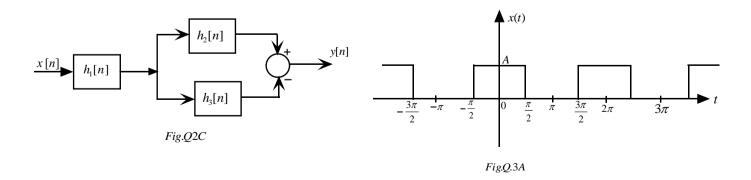
3C. Use defining equation of DTFS to obtain the time signal for

$$X(k) = Sin\left(\frac{2\pi}{5}k\right) \tag{03}$$

- **4A.** Find the CTFT of a continuous time aperiodic signal $x(t) = e^{-a|t-t_0|}$, also plot magnitude and phase spectra. Use properties. (04)
- **4B.** Use defining equation to find aperiodic continuous time signal for its Fourier representation given as: $X(j\omega)=e^{-|\omega|}$
- **4C.** Find the Fourier transform $X[e^{j\Omega}]$ of aperiodic discrete time signal x[n] given as:

$$x[n] = \left[\frac{\sin\frac{\pi}{4}n}{\pi n}\right] * \left[\frac{\sin\frac{\pi}{4}[n-2]}{\pi[n-2]}\right]; \text{ Symbol * represents convolution. Use properties.}$$
(03)

5A. Find time domain signal x[n] for the given magnitude and phase of $X \left[e^{j\Omega} \right]$ as:


$$\left| X \left[e^{j\Omega} \right] \right| = \begin{cases} 1 ; & \frac{\pi}{2} \le \Omega \le \pi \\ 0 ; & otherwose \end{cases} \text{ and } Arg \left\{ X \left[e^{j\Omega} \right] \right\} = -4\Omega$$
(04)

5B. Determine the Z-Transform and the ROC of the two-sided signal

$$x[n] = 7\left(\frac{1}{3}\right)^n u[n] - 6\left(\frac{1}{3}\right)^n u[-n-1]$$
(03)

5C. Use the partial fractions technique to determine the time domain signal corresponding to the

following.
$$X(z) = \frac{1 + \frac{4}{5}z^{-1}}{\left(1 - \frac{1}{2}z^{-1}\right)\left(1 + \frac{1}{4}z^{-1}\right)}; \quad |z| > \frac{1}{2}$$
(03)

ELE 2201 Page 2 of 2