

Dog No					
Reg. NO.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University FOURTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION - April/May 2017 SUBJECT: DIGITAL SIGNAL PROCESSING (ECE - 2203)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidatesAnswer ALL questions.

• Missing data may be suitably assumed.

1A.	The signal $0.7^n u[n]$ is applied to the input of an unknown causal LTI system and					
	$0.7^n u[n] + 0.5^n u[n]$ is observed at the output. Identify the causal input signal that will					
	cause the output $0.5^n u[n]$. Evaluate the system function and impulse response of the system					
1B.	Explain overlap save method of filtering long length data sequence.					
1C.	Consider a linear shift invariant discrete system with input $x[n]$ and output $y[n]$ for					
	which $y[n] - y[n-1] - \frac{1}{4}y[n-2] = 3x[n] - 2x[n-1]$. Determine the system function					
	and comment on causality and stability.					
	(5+3+2)					
2A.	Compute 8-point DFT of the sequence $x[n] = \cos\left[\frac{\pi}{2}n\right]$, $0 \le n \le 7$ using radix-2 DIT -					
	FFT algorithm. Specify the computational advantages of FFT when compared with direct DFT in terms of complex multiplications and additions.					
2B.	Compute 8 point DFT of $x(n) = 3 - n ; -2 \le n \le 2$. Plot the magnitude and phase spectrum.					
2C.	$X[k] = [4, 1-j2.4, 0, 1-j0.4, 0, 1+j0.4, 0, 1+j2.4] $ is eight point DFT of $x[n] = \begin{cases} 1, 0 \le n \le 3\\ 0, elsewhere \end{cases}$					
	Compute 8 point DFT of $x_1[n] = \begin{cases} 0, & 0 \le n \le 3\\ 1, & 4 \le n \le 7 \end{cases}$					
	(5	+3+2)				
3A.	Determine the coefficients of a linear phase FIR filter of length M=15 which has symmetric					
	unit sample response and a frequency response that satisfies the conditions					
	(1, k = 0.1.2.3)					
	$H_{\pi}(\frac{2\pi k}{k}) = 0.4, k = 4$					
	15^{-1} 15^{-1} 0^{-1} $k = 567$					
	$(0, \kappa - 3, 0, 1)$					
3B.	Consider a 5 length Linear phase FIR filter(symmetric impulse response) with one of the					
	zeros located at $Z_1=0.25j$. Find the location of other zeros and plot them in Z plane. Also					
20	determine the system function.					
<i>3</i> C.	write the expression for Hamming and Hanning window function.					
	(5+3+2)					

4A.	Explain the properties of Chebyshev type-I filter. Discuss with mathematical expressions about pole	
	location and estimation of order for low pass filter	
4B.	Explain the analog to digital mapping principle in bilinear transformation method. What is	
	frequency warping and how it is compensated?.	
4C.	Write the time domain and frequency domain constraints for FIR filters to have linear phase	
	response.	
	(5	5+3+2)
5A.	Determine the impulse response of an FIR lattice with parameters $K_1 = 0.6$, $K_2 = 0.4$, $K_3 = 0.8$. Also	
	sketch the lattice and direct form structures.	
5B.	Explain the spectral leakage and resolution problems involved in estimation of PSD	
5C.	What are the limitations of non-parametric methods in spectral estimation.	
	(5	5+3+2)