Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University FOURTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION - April/May 2017 SUBJECT: DIGITAL SYSTEM DESIGN USING VERILOG (ECE-2204)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

1A.	Implement following functions using Xilinx XC 3000. How many CLBs and LUTs are required?					
	$\mathbf{Y_1} = \bar{\mathbf{x}} + \mathbf{y_1}$; $\mathbf{Y_2} = \mathbf{x} \overline{\mathbf{y_2}} + \bar{\mathbf{x}} \overline{\mathbf{y_1}}$; $\mathbf{z} = \mathbf{x} \cdot \mathbf{y_1}$ where $\mathbf{Y_1}, \mathbf{Y_2}$ are the next state variables and $\mathbf{y_1}, \mathbf{y_2}$					
	are the present state variables. Here, \mathbf{x} and \mathbf{z} are input and output respectively.					
1B.	Implement 3-bit Binary-to-Gray code converter using ACT-1 FPGA series. How many minimum					
	number of logic modules are required to implement?					
1C.	Explain the Y chart.					
	(5+3+2)					
2A.	Give the implementation of following function using single ACT3 C logic module. Y = AB'C'D' + AB'C'E' + AB'C'DE + A'BDE + A'B'C'DE + A'CDE					
2B.	Find the test vector for SA1 fault at node α shown in FIG. Q2B using D-Algorithm.					
2C.	Write a dataflow Verilog code for 1-bit equality detector.					
	(5+3+2)					
3A.	Write a dataflow Verilog code for following combinational circuits:					
	[i] N-bit gray to binary code converter [ii] 2-bit equality detector					
3B.	Explain scan path technique for testing sequential circuits.					
3C.	Find collapse ratio of 3-input NOR gate.					
	(5+3+2)					
4A.	Find the controllability and observability for the circuit shown in FIG. Q4A .					
4B.	Find the test vector using path sensitization technique for the circuit shown in FIG Q4B					
4C.	Find the test vector for SA1 fault using ITG shown in FIG. Q4C					
	(5+3+2)					
5A.	Write a sequential Verilog code for 3-bit ripple up-counter.					
5B.	Write switch level Verilog description of 3 input CMOS NOR gate.					

