Reg. No.						
	Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

FOURTH SEMESTER B.Tech. (E & C) DEGREE END SEMESTER EXAMINATION May 2017

SUBJECT: I C Systems (ECE - 2202)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.

1(a)	Derive the transfer characteristics for an emitter coupled differential amplifier using BJT and highlight the salient information that can be read from the graph.
(b)	For the circuit shown in Fig.Q.No.1.b., determine the collector currents through transistors Q1 and Q2, and calculate the value of resistance Rc required to obtain Vo=6V. Assume β =200.
(c)	Why level shifters are needed in op-amps? Give reasons. Explain the operation of at least one level
	shifter circuit. $(5+3+2)$
2(a)	For the circuit shown in fig. q.no.2.a, determine the output voltage Vo.
(b)	Design a practical differentiator circuit that can differentiate a max frequency of 5kHz. and draw the output wave form for a square wave input of 200Hz with 2V peak to peak.
(c)	Draw the circuit of a V-I converter with floating load and show that the current is independent of
	load. $(5+3+2)$
3(a)	Draw the circuit of an instrumentation amplifier using three op-amp and derive the expression for the gain.
(b)	It is required to band limit voice signal to 4kHz., before applying for further processing to avoid
	aliasing. The rate of attenuation in the transition band should be at least 60dB/decade and pass band gain of 8. Design appropriate Butterworth filter.
(c)	Derive the transfer function of the circuit shown in fig.q.no.3.c. and indicate the function performed
	by the circuit. $(4+3+3)$
4(a)	Design a circuit using 555 Timer to generate a free running pulse train of 5kHz. with 50% duty cycle
	and peak amplitude 10Volts. Derive the expressions used.
(b)	With the help of a neat block diagram, explain how the input frequency can be multiplied by a factor of 4 using PLL.
(c)	Explain the terms i) Capture range and ii) Lock in range as applicable to PLL. Also state the name of
	the functional block of PLL that controls each of the above parameters. (4+3+3)
5(a)	With help of a neat diagram explain the operation of flash ADC which converts the given analog input into equivalent three bit binary code. List the salient features of the circuit.
(b)	
(~)	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -

ECE 2202 Page 1|2

- (c) If in an 12-bit DAC, the reference voltage used is +12V, calculate i) the resolution ii) The full scale output voltage and iii) the output voltage corresponding to the binary input of 101011001100
- (d) Design a circuit to generate a time delay of 20msec on demand, using 555 Timer. (2.5 X 4 = 10)

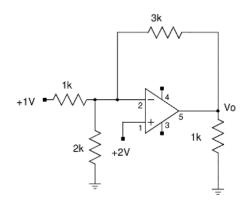


Fig.Q.No.2.a

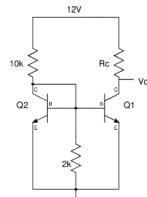
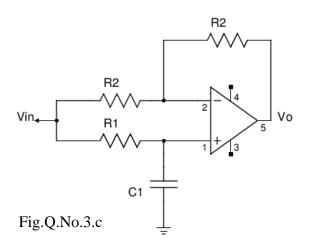



Fig.Q.No.1.b.

ECE 2202 Page 2|2