

IV SEMESTER B.TECH (INDUSTRIAL & PRODUCTION ENGINEERING)

END SEMESTER EXAMINATIONS, APRIL/MAY 2017

SUBJECT: ENGINEERING MATHEMATICS IV (MAT 2209) REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates

Answer **ALL** the questions. All questions carry equal marks

1A.	An incomplete frequency distribution for the weights of 120 boys is given below.							
	Find the missing frequencies, given that the mode is 51.25 and $\sum f = 120$.							2
	We	ight(In	30-40	40-50	50-60	60-70	70-80	5
	kgs)	1.0					
	No	of boys	12	-	35	-	11	
1B.	A box contains 10 red, 5 white and 8 black balls. A person draws 4 balls from the box							
	at random. H	Find the pr	obability tha	t among the	balls drawn,	there is at lea	st one ball of	3
	1 1	1	5	0	,			
	each color.							
1C.	Find the reg	ression lin	les of y on x	and x on y fo	or the followi	ng data.		
	Х	153	157	168	160	170	163	4
	Y	48	50	50	49	54	53	
2A.	If X,Y,Z are uncorrelated random variables with standard deviation 5, 12 and 19							
	respectively and if $U = V + V$ and $V = V + Z$. Evaluate the correlation coefficient							
	respectively and if $U = X \pm I$ and $V = I \pm Z$, Evaluate the correlation coefficient							
	between U and V.							
2 B .	Find the mean and variance of the sum obtained in tossing a pair of fair dice						2	
20.	The the mean and variance of the sum obtained in tossing a pair of fair thee.							3
2C.	A two dimensional random variable (X, Y) is uniformly distributed inside a region							
	bounded by the parallelogram with vertices at (0, 0), (2, 0) (1, 1) and (3, 1). Find the							4
	marginal distribution of X and Y.							
3A.	There are two bags one of which contains 4 white and 3 black balls and the other has							
	A black and 3 white balls. A fair die is rolled. If a 1 or a 3 turns up, a ball is drawn from							
	+ black and 5 white balls. A fail die is foned. If a f of a 5 turns up, a ball is drawn from							
	the first bag. Otherwise a ball is drawn from the second bag. What is the probability							
	that the ball is white?							
								1

Reg. No.					
----------	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

3C.Let X be a continuous random variable with pdf $f(x) = \begin{cases} 1; 0 < x < 1\\ 0; elsewhere \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 0; elsewhere \\ 1; 0 < x < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 < 1 \\ 1; 0 $	3B.	A manufacturer of metal pistons finds that on the average, 12% of his pistons are rejected because they are either oversize or undersize. What is the probability that a batch of 10 pistons will contain i) no more than 2 rejects? ii) at least 2 rejects?						3	
4A. Find the mean and variance of Gamma Distribution. 34B. If \overline{X} is the mean of the random sample of size n from a normal distribution with u a mean and variance 100. Find the value of n so that $P(u - 5 < \overline{X} < u + 5) = 0.954$ 34C. The time X minutes, taken by a person to install a satellite dish may be assumed to be a normal random variable with $P(X < 170) = 0.14$ and $P(X > 200) = 0.03$. Find the mean and standard deviation of X. 45A. Suppose that $X_{j, j} = 1, 2, 50$ are independent random variables each having a poisson distribution with $m = 0.03$. Let $S = X_1 + X_2 + \cdots + X_{50}$. Find $P(S \ge 3)$. 35B. If X_1, X_2 and X_3 are independent random variables and $Z = X_1 + X_2 + X_3$. Let the mgf of X_1, X_2 and X_3 be $(1 - 2t)^{-3}, (1 - 2t)^{-2}$ and $(1 - 2t)^{-\frac{1}{2}}$ respectively. Then find the mean and variance of Z. 35C. Compute mean deviation from the median and also find coefficient of mean deviation from the median. 4	3C.	Let X be a continuous random variable with pdf $f(x) = \begin{cases} 1 ; 0 < x < 1 \\ 0; elsewhere \end{cases}$ Let X_1 and X_2 be a sample from X. Let $Y_1 = X_1 + X_2$, $Y_2 = X_1 - X_2$. Find the pdf of Y_1 .						4	
 4B. If X̄ is the mean of the random sample of size n from a normal distribution with u a mean and variance 100. Find the value of n so that P(u - 5 < X̄ < u + 5) = 0.954 4C. The time X minutes, taken by a person to install a satellite dish may be assumed to be a normal random variable with P(X < 170) = 0.14 and P(X > 200) = 0.03. Find the mean and standard deviation of X. 5A. Suppose that X_j, j = 1,2, 50 are independent random variables each having a poisson distribution with m = 0.03. Let S = X₁ + X₂ + + X₅₀. Find P(S ≥ 3). If X₁, X₂ and X₃ are independent random variables and Z = X₁ + X₂ + X₃. Let the mgf of X₁, X₂ and X₃ be (1 - 2t)⁻³, (1 - 2t)⁻² and (1 - 2t)^{-1/2} respectively. Then find the mean and variance of Z. 5C. Compute mean deviation from the median and also find coefficient of mean deviation from the median. Marks 	4A.	Find the mean and variance of Gamma Distribution.						3	
 4C. The time X minutes, taken by a person to install a satellite dish may be assumed to be a normal random variable with P(X < 170) = 0.14 and P(X > 200) = 0.03. Find the mean and standard deviation of X. 5A. Suppose that X_j, j = 1,2, 50 are independent random variables each having a poisson distribution with m = 0.03. Let S = X₁ + X₂ + + X₅₀. Find P(S ≥ 3). B. If X₁, X₂ and X₃ are independent random variables and Z = X₁ + X₂ + X₃. Let the mgf of X₁, X₂ and X₃ be (1 - 2t)⁻³, (1 - 2t)⁻² and (1 - 2t)^{-1/2} respectively. Then find the mean and variance of Z. 5C. Compute mean deviation from the median and also find coefficient of mean deviation from the median. 	4B.	If \overline{X} is the mean of the random sample of size n from a normal distribution with u a mean and variance 100. Find the value of n so that $P(u - 5 < \overline{X} < u + 5) = 0.954$							3
 5A. Suppose that X_j, j = 1,2, 50 are independent random variables each having a poisson distribution with m = 0.03. Let S = X₁ + X₂ + + X₅₀. Find P(S ≥ 3). 3 If X₁, X₂ and X₃ are independent random variables and Z = X₁ + X₂ + X₃. Let the mgf of X₁, X₂ and X₃ be (1 - 2t)⁻³, (1 - 2t)⁻² and (1 - 2t)^{-1/2} respectively. Then find the mean and variance of Z. 5C. Compute mean deviation from the median and also find coefficient of mean deviation from the median. 4 Marks 	4C.	The time X minutes, taken by a person to install a satellite dish may be assumed to be a normal random variable with $P(X < 170) = 0.14$ and $P(X > 200) = 0.03$. Find the mean and standard deviation of X.							4
distribution with $m = 0.03$. Let $S = X_1 + X_2 + \dots + X_{50}$. Find $P(S \ge 3)$. If X_1, X_2 and X_3 are independent random variables and $Z = X_1 + X_2 + X_3$. Let the mgf of X_1, X_2 and X_3 be $(1 - 2t)^{-3}$, $(1 - 2t)^{-2}$ and $(1 - 2t)^{-\frac{1}{2}}$ respectively. Then find the mean and variance of Z. 5C. Compute mean deviation from the median and also find coefficient of mean deviation from the median. Marks 0-10 10-20 20-30 30-40 40-50 50-60	5A.	Suppose that X_j , $j = 1, 2,, 50$ are independent random variables each having a poisson						3	
 5B. If X₁, X₂ and X₃ are independent random variables and Z = X₁ + X₂ + X₃. Let the mgf of X₁, X₂ and X₃ be (1 - 2t)⁻³, (1 - 2t)⁻² and (1 - 2t)^{-1/2} respectively. Then find the mean and variance of Z. 5C. Compute mean deviation from the median and also find coefficient of mean deviation from the median. Marks 0,10 10,20 20,30 30,40 40,50 50,60 		distribution with $m = 0.03$. Let $S = X_1 + X_2 + \dots + X_{50}$. Find $P(S \ge 3)$.							
5C. Compute mean deviation from the median and also find coefficient of mean deviation from the median. 4 Marks 0-10 10-20 20-30 30-40 40-50 50-60	5B.	If X_1, X_2 and X_3 are independent random variables and $Z = X_1 + X_2 + X_3$. Let the mgf of X_1, X_2 and X_3 be $(1 - 2t)^{-3}, (1 - 2t)^{-2}$ and $(1 - 2t)^{-\frac{1}{2}}$ respectively. Then find the mean and variance of Z.							3
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	5C.	Compute mean deviation from the median and also find coefficient of mean deviation							
$1 = 10$ Marks $10_{-10} = 10_{-20} = 120_{-30} = 130_{-40} = 140_{-50} = 150_{-60} = 10_{-10}$		from the me	dian.	10.00	20.20	20.40	40.50	50.00	4
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Marks Students	0-10	10-20	20-30	30-40 15	40-50	30-60	