Re

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

IV SEMESTER B.TECH. (CS/ICT/CC - ENGINEERING)

END SEMESTER MAKEUP EXAMINATIONS, JUNE-2017

SUBJECT: ENGINEERING MATHEMATICS IV [MAT 2206]

REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50 (16/06/2017)

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitably assumed.

1A.	Each of the two persons tosses three fair coins. Find the probability that they get the				
	same number of heads.				
1B.	An archer with an accuracy of 75% fires three arrows at one target. The probability of				
	the target falling is 0.6 if it is hit once, 0.7 if it is hit twice, and 0.8 if it is hit three				
	times. Given that the target has fallen, find the probability that it was hit twice.				
1C.	The joint pdf of the two dimensional random variable (X, Y) is given by				
	$f(x, y) = k xye^{-(x^2+y^2)}$; $x > 0, y > 0$.				
	(i) Find the value of k (ii) Prove that Y and Y are independent				
	(1). Find the value of K (1). Prove that A and T are independent.				
2A.	Let x be a continuous random variable with put f given by: $\int ar 0 \le r \le 1$				
	$u_{A}, 0 \leq x \leq 1,$	•			
	$f(x) = \begin{cases} a, 1 \le x \le 2, \\ a < 1 \le x \le 2, \end{cases}$	3			
	$-ax + 3a, \ 2 \le x \le 3,$	Marks			
	0, elsewhere.				
	(a) Determine the constant <i>a</i> . (b). Determine the cdf of <i>X</i> .				
2B.	If X, Y, and Z are uncorrelated random variables with standard deviations 5, 12, and 9				
	respectively and if $U=X+Y$ and $V=Y+Z$, evaluate the correlation coefficient between U and V.				
2C.	In a normal distribution 31% of the item are under 45 and 8% are over 64. Find the				
	mean and standard deviation of the distribution.				
3A.	Find the mean and variance of the Chi-square distribution with parameters n .				

	Suppose that <i>X</i> is uniformly distributed over the interval (-1, 1). Obtain the pdf of the						
3B.		3					
					Marks		
	1641	$f(x) = 2e^{-\lambda t}$	(x-a) $x > a$			4	
3C.	mgi of X and	Marks					
	hence find $E(X)$ and $V(X)$.						
40	State Central limit theorem. A sample of size 5 is obtained from a random variable with					3	
	distribution $N(12, 4)$. Find the probability that the sample mean exceeds 13.						
	$M(x, -2) = 11 - x^2 - 7.62$						
4B.	A random sample of size 9 from the distribution $N(\mu, 0)$ yields $S = 7.05$.					3	
	Determine 95% confidence interval for σ^2 .					Marks	
	Let $(X_1, X_2,, X_n)$ be a random sample of size <i>n</i> from a distribution having pdf						
4C.	$\int f(x;\theta) = \begin{cases} \theta^x (1-\theta)^{1-x}, x = 0, 1, 2, \dots, 0 \le \theta \le 1 \end{cases}$ Find the maximum						
	$\begin{array}{c} f(x,0) = \\ 0, otherwise \end{array}$					4	
	likelihood estimator for θ .					Marks	
	A die was cast $n = 120$ independent times and the following data resulted:						
	Spots up12	3	4	5	6		
5A.	Frequency b 20	20	20	20	40- <i>b</i>		
	If we use Chi-square test, for what value of b would the hypothesis that the die is						
	unbiased to be rejected at 0.025 significance level?					Marks	
	Let $(X_1, X_2,, X_n)$ denote a random sample from the distribution, that has pdf						
	$\left(\partial x^{\theta-1} \right) < x < 1$						
5B.	$f(x;\theta) = \begin{cases} \partial x & 0 < x < 1 \\ 0 & 1 \end{cases}$. Find a best critical region for testing simple						
	0, otherwise					3	
	hypothesis $H_0: \theta = 1$ against alternative hypothesis $H_1: \theta = 2$.					Marks	
	$\int 1 - x/$						
	Let X be the random variable, having the pdf $f(x;\theta) = \int \frac{1}{\theta} e^{-\lambda \theta}, \ 0 < x < \infty$						
	0 otherwise						
5C.							
	Let $H_0: \theta = 2, H_1: \theta = 4$. Use random sample of size 2 and define critical region					4	
	to be $C = \{(X_1, X_2)/9.5 \le X_1 + X_2 < \infty\}$. Find the significance level of the test.				Marks		