Reg. No.

IV SEMESTER B.TECH. END SEMESTER EXAMINATIONS,

APRIL/MAY 2017

SUBJECT: OPEN ELECTIVE I - FUNDAMENTALS OF DATA STRUCTURES AND ALGORITHMS (ICT 3283)

REVISED CREDIT SYSTEM (02/05/2017)

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitably assumed.

200		Sur
1A.	Write a function to create a binary search tree. Given the set of values 50, 75, 25, 65, 70, 80, 78, 68 create a Binary Search Tree.	5
1B.	Prove or disprove the following:	3
	i. $2^{n+1} = O(2^n)$	
	ii. $2^{2n} = O(2^n)$	
1C.	If the depth of an almost complete binary tree is 7, what is the minimum and maximum number of nodes in the tree.	2
2A.	Write a recursive function to sort elements using quick sort. Also trace the function for the following set of elements. 12, 23, 7, 5, 13, 51, 19, 65, 62, 18, 65, 2	5
2B.	What is an expression tree? Write an expression tree for the following infix expression A+B*(C+D)+E-A/C	3
2C.	Describe a method to represent a binary tree using an array clearly mentioning the ways to determine the position of parent and child nodes of a node with position 'i' in the tree.	2
3A.	 Write functions for the following operations on a circular doubly linked list. i. Create the list ii. Insert a node after a node pointed to by <i>ptr</i> 	5
	iii. Print the list in reverse order	
3B.	Evaluate the following expression using stack: 6*4-7/3+2	3
3C.	Discuss the time complexity of linear and binary search algorithms	2
4A.	Write a function to delete an element from a binary search tree(BST). Delete the root from the BST shown in Figure Q.4A and show the output.	5

ICT 3283

- Represent the graph shown in Figure Q.4B using:
 - a. adjacency matrix
 - b. linked adjacency list

Figure Q.4B

- Write a recursive function to find the sum of all the elements of an array and 2 compute the space complexity.
- What is a sparse matrix? Give an example. Discuss the practical implementation of 5 creation of a sparse matrix with minimum space requirement. Write a function to find the transpose of a sparse matrix.
- 5B. Given the postorder and inorder traversal of a binary tree, construct the unique binary 3 tree.

Postorder: GDBEHIFCA Inorder: BGDAECHFI

Construct a threaded binary tree for the tree shown in Figure.Q.5C

Figure.Q.5C

2