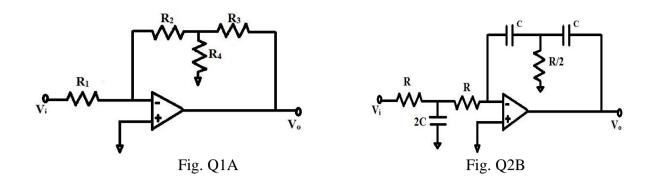
Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

FOURTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, APRIL/MAY 2017

SUBJECT: ANALOG SYSTEM DESIGN [ICE 2204]


Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitably assumed.

_		_				
1A.	Obtain the expression for V ₀ in the circuit shown in Fig. Q1A.	3				
1B.	Draw the block diagram of an op-amp. Explain the function of each block.	3				
1C.	Explain the working of differential amplifier circuit using transistors in common mode.	4				
2A.	Draw the circuit diagram of the differential instrumentation amplifier using a transducer bridge. Derive the expression for V_o .	3				
2B.	For the double integrator circuit shown in Fig. Q2B, prove that the transfer function is given by the following expression. Assume that the op-amp is ideal. $\frac{Vo(s)}{Vi(s)} = \frac{1}{(RCs)^2}$	3				
2C.	Derive the expression for the transfer function of a 2 nd order high pass butterworth filter.	4				
3A.	With relevant circuit diagram and waveforms, derive the expression for frequency of oscillations of astable multivibrator using op-amp.					
3B.	• Describe the working of monostable multivibrator using 555 timer with internal block diagram and output waveforms. Derive the expression for pulse width.					
4A.	Derive the expression for frequency of RC phase shift oscillator with relevant circuit diagram.	4				
4B.	Explain the working of Voltage Controlled Oscillator with internal block diagram and output waveforms. Also derive the expression for its frequency of oscillation.	4				
4C.	Design Wien bridge oscillator with $f_0 = 1.5$ KHz. Assume $C = 0.01 \mu F$.	2				
5A.	Explain Successive Approximation ADC. For a 4 bit Successive Approximation	_				
	ADC with an analog input of 11.3V, determine the output at each clock cycle.	5				
5B.	Design a 4 bit weighted-resistor DAC whose full scale output voltage is -5V. The					
	logic levels are $1 = +5V$ and $0 = 0V$. What is the output voltage when the input is 1101? Assume $R_f = 10K\Omega$.	3				
5C.	Define Resolution and Settling time for a DAC	2				

ICE 2204 Page 1 of 2

****** END ******

ICE 2204 Page 2 of 2