

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

FOURTH SEMESTER B.TECH. (INSTRUMENTATION AND CONTROL ENGG.) END SEMESTER EXAMINATIONS, APRIL/MAY 2017

SUBJECT: LINEAR CONTROL THEORY [ICE 2203]

Time: 3 Hours

MAX. MARKS: 50

2

3

5

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- Semilog graph sheet will be supplied
- **1A.** Write down the force current analogy of the mechanical system elements.
- **1B.** Derive the transfer function of a field current controlled D.C servomotor
- 1C. Derive the transfer function of the Ladder network shown in Fig Q1C

- 2A. Explain the block diagram reduction rules for (i) moving a pick off point ahead of 2 the block (ii) Moving a pick off point beyond the block.
- **2B.** Derive the expressions for K_p , K_V , and K_a for a unity feedback control system **3**
- 2C. Using Mason's gain formula reduce the signal flow graph shown in Fig Q2C and find 5 the overall transfer function $\frac{y_6(s)}{(s)}$

Fig Q2C

3A. Derive an expression for peak overshoot of a standard second order system, assuming 2 the expression for unit step response.

- **3B.** Using Routh Hurwitz criteria determine the stability of the system, whose **3** characteristic equation is given by $s^6 + 3s^5 + 8s^4 + 18s^3 + 20s^2 + 24s + 16 = 0$.
- **3C.** The open loop transfer function of a feedback system is given by **5** $G(s)H(s) = \frac{K}{s(s+1)(s+2)}$. Using Nyquist plot, find the range of K for stability. Comment on stability for K = 10 by Nyquist stability criteria.

4A. Sketch the root locus for the open loop transfer function

$$G(s) = \frac{K}{s(s+3)(s+4)}$$

4B. A unity feedback system has an open loop transfer function $G(s) = \frac{K(s+20)}{s(s+50)(s+100)}$ Find the value of K for Phase margin = 60°. Use Bode

plot method.

5A. Obtain the transfer function of the given Bode magnitude plot shown in Fig Q5A. 2

Fig Q5A

5B.	Derive the transfer function for a lag network	3
5C.	Explain the procedure for designing a lead compensator in time domain.	5

*************END***********

5

5