

## 1ANIPAL INSTITUTE OF TECHNOLOGY

## IV SEMESTER B.TECH MECHANICAL ENGINEERING END SEMESTER **EXAMINATION, APRIL 2017** SUBJECT: ENGINEERING MATHEMATICS-IV (MAT-2210) (21-04-2017)

Time: 3 Hours

Max. Marks : 50

Answer all the questions. Statistical tables will be provided.

**1A.** A paint store chain produces and sells latex and semi gloss paint. Based on long range sales, the probability that a customer will purchase latex is 0.75. Of those that purchase latex paint, 60% also purchase rollers. But 30% of semi gloss buyers purchase rollers. A randomly selected buyer purchase a roller and a can of paint. What is the probability that the paint is latex?

**1B.** Fit a parabola of the form  $y = a + bx + cx^2$  to the following data:

| x | 0 | 1 | 2 | 3  | 4  | 5  |
|---|---|---|---|----|----|----|
| y | 1 | 3 | 7 | 13 | 21 | 31 |

1C. A bag contains 10 white balls and 3 red balls while another bag contains 3 white balls and 5 red balls. Two balls are drawn at random from the first bag and put in the second bag and then a ball is drawn at random from the second bag. What is the probability that it is a white ball?

(4+3+3)

**2A.** Find the power series solution of the differential equation  $\frac{d^2y}{dx^2} - 2xy = 0$ .

**2B.** If X is a random variable taking values  $0, 1, 2, \dots$  and  $P(X = x) = pq^x$ , where p and q are positive constant such that p + q = 1 then, find the moment generating function (m.g.f.) of X. If  $E(X) = m_1$ ,  $E(X^2) = m_2$ , show that  $m_2 = m_1(2m_1 + 1)$ .

**2C.** Suppose that the random variable X has possible values 1, 2, 3, ... and the probability distribution  $P(X = x) = \frac{1}{2^j}$  for  $j = 1, 2, 3, \dots$  Find (i) P(X is even)(ii)P(X is divisible by 3)

**3A.** The marks X obtained in mathematics by 1000 students is normally distributed with mean 78% and standard deviation 11%. Determine,

- (i) how many students got marks above 98%.
- (ii) what was the highest marks obtained by the lowest 10% of the students.

**3B.** Let X be a random variable follows normal distribution with mean  $\mu$  and variance  $\sigma^2$ . Find the p.d.f of  $Y = \left(\frac{x-\mu}{\sigma}\right)^2$ . **3C.** Prove that  $x^4 - 3x^2 + x = \frac{8}{35}P_4(x) - \frac{10}{7}P_2(x) + P_1(x) - \frac{4}{5}P_0(x)$ . (4+3+3)

**4A.** A two dimensional random variable (X, Y) is uniformly distributed in the region bounded by a circle  $x^2 + y^2 = a^2$ . Find COV(X, Y).

**4B.** Prove that  $J_{\frac{5}{2}}(x) = \sqrt{\frac{2}{\pi x}} \left[ \left( \frac{3-x^2}{x^2} \right) \sin x - \frac{x}{2} \cos x \right]$ 

4C. Derive mean and variance of a Poisson distribution.

(4+3+3)

**5A.** If X and Y are two independent random variables with p.d.f.'s  $g(x) = 2e^{-x^2}$  for  $x \ge 0$  and  $h(y) = 2e^{-y^2}$  for  $y \ge 0$  respectively. Then find the p.d.f. of  $R = \sqrt{X^2 + Y^2}$ .

**5B.** Let  $X_1, X_2, ..., X_{25}$  and  $Y_1, Y_2, ..., Y_{25}$  be two independent samples taken from N(3, 16) and N(4, 9) respectively. Find  $P\left(\frac{\overline{X}}{\overline{Y}} > 1\right)$ 

**5C.** A box contains 12 items of which 4 are defective. A sample of 3 items is selected from the box. Let X denote the number of defective items in the sample. Find the probability distribution of X and V(X)

(4+3+3)

```
* * * * * * * * * *
```