
Reg. No.		T	
		1 1	1 1

IV SEMESTER B.TECH. (MECHATRONICS)

MAKE UP END SEMESTER EXAMINATIONS, JUNE/JULY 2017

SUBJECT: ENGINEERING MATHEMATICS-IV [MAT 2211]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX MARKS: 50

Instructions to Candidates:

- Answer ALL the questions.
- Missing data may be suitable assumed.

C.	State and prove Bayes Theorem						3
3B.	Find the mean and variance of Binomial distribution.						3
3A.	Solve the difference equation $y_{n+2} + 4y_{n+1} + 3y_n = 3^n$ with $y_0 = 0, y_1 = 1$ using Z - Transform.						4
2C.	Obtain the power series solution of the equation $(1-x^2)y'' - xy' + 4y = 0$.						3
2B.	Solve the difference equation $y_{n+2} - 2y_{n+1} + 4y_n = 2^n$.						
to the second of the second	Y:	1	1.8	1.3	3 2.5	4	4
2A.	Fit a parabola X:	to the followi	ing data.				
1C	green and 8 red balls respectively. Two balls are drawn at random from one of the from bag X?						
1B	For a normal and 89% hav distribution.	ly distributed e their values	population 7% less than 63. Fi	The mount of	mu standard de	Viation of the	3
1A	(i) Find its pdf.(ii) Find the correlation coefficient.						

Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

	The diameter of an electric cable say X is assumed to be a continuous random $(6x(1-x),0.6x(1-x))$	
4A.	variable with pdf, $f(x) = \begin{cases} 6x(1-x); 0 \le x \le 1 \\ 0 ; elsewhere \end{cases}$ (i) Check that the above is a pdf. (ii) Obtain the expression for cumulative distribution function. (iii) Determine a number 'b' such that $P(X < b) = 2P(X \ge b)$. (iv) Compute $P(X \le \frac{1}{2} \frac{1}{3} < X < \frac{2}{3})$.	4
4B.	Find the M.G.F. of Gamma distribution. Hence find E(X).	3
4C.	Find the Z-transform of $\frac{1}{n!}$ and hence deduce $Z\left(\frac{1}{(n+1)!}\right)$.	3
5A.	Prove that $(i) \frac{d}{dx} [x^n J_n(x)] = x^n J_{n-1}(x)$	4
5B.	Apply Chebyshev's inequality to calculate (i) $P(5 < X \le 15)$ (ii) $P(X-10 \ge 3)$ for a random variable X with $\mu = 10$ and $\sigma^2 = 4$.	3
5C.	Find the pdf of $Y = 8X^3$ if X has the pdf $f(x) = \begin{cases} 2x; 0 \le x \le 1 \\ 0; elsewhere \end{cases}$.	3