Reg. No.



MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

## IV SEMESTER B.TECH. (Printing & Media)

### **END SEMESTER EXAMINATIONS, APRIL 2017**

## SUBJECT: ENGINEERING MATHEMATICS IV [MAT 2212]

#### REVISED CREDIT SYSTEM (19/04/2017)

Time: 3 Hours

MAX. MARKS: 50

#### Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

| 1A. | Solve $\frac{\partial u}{\partial t} = \frac{1}{16} \frac{\partial^2 u}{\partial x^2}$ , $0 < x < 1$ , $t > 0$ , with $u(x, 0) = 0 = u(0, t)$ , $u(1, t) = 100t$ , compute u for one time steps with $h = \frac{1}{4}$ , using Crank Nicolson's method                  | 04 |  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| 1B. | Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ , $0 < x < 1$ , $t > 0$ subjected to $u(x, 0) = 100(x - x^2)$ , $\frac{\partial u}{\partial t}(x, 0) = 0$ , $u(0, t) = u(1, t) = 0$ taking $h = 0.25$ .                                   |    |  |  |  |  |  |  |
| 1C. | A and B alternatively throw pair of dice. A wins if he throws sum 6 before B throws                                                                                                                                                                                     |    |  |  |  |  |  |  |
| 2A. | Solve $y'' + (1 + x)y' - y = 0$ , $y(0) = y'(0)$ , $y(1) + y'(1) = 1$ by<br>taking $h = 0.5$ .                                                                                                                                                                          |    |  |  |  |  |  |  |
| 2B. | A player tosses 3 fair coins. He wins Rs 500 if 3 heads occur, Rs 300 if 2 head occur<br>Rs 100 if one head occur. On the other hand, he loses Rs 1500 if 3 tails occur. Find<br>the expected value of the game to the player.                                          |    |  |  |  |  |  |  |
| 2C. | Bus will arrive at a station has uniform distribution between 10 am to 10.15 am. Bus has not come for 8 min, what is the probability that it will come after 2 or more minutes completely?                                                                              |    |  |  |  |  |  |  |
| 3A. | Chances that the doctors diagnose disease 60% correctly. The chance that the patient will die after correct diagnosis is 40%. The chance of death by wrong diagnosis is 70%. If patient has died then what is the probability that his disease was diagnosed correctly? |    |  |  |  |  |  |  |
| 3B. | Find the mean and variance of Poisson's distribution.                                                                                                                                                                                                                   |    |  |  |  |  |  |  |
| 3C. | If X, Y, Z are uncorrelated random variables having standard deviation 5, 12, 9 respectively, then find the correlation coefficient between $(X + Y)$ , $(Y + Z)$ .                                                                                                     |    |  |  |  |  |  |  |
| 4A. | Suppose the continuous random variable has joint PDF given by<br>$f(x,y) = \begin{cases} k(x^2 + \frac{xy}{3}) , 0 \le x \le 1; 0 \le y \le 2\\ 0, & otherwise \end{cases} \text{ find i) } k \text{ (ii ) } P(X + Y \ge 1)$                                            | 04 |  |  |  |  |  |  |

Reg. No.

# MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

A Constituent Institution of Manipal University

| 4B. | The temperature X is normally distributed with mean 50, variance 4. Find the probability that the temperature lies between $48^{\circ}c$ and $53^{\circ}c$ .                                                                                                                                                                                                                                                                                                                                                                                        |                |                                                       |  |                           |                           |                             |    |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------|--|---------------------------|---------------------------|-----------------------------|----|--|--|
| 4C. | Solve the Source                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I<br>II<br>III | wing trans<br>Destination<br>A<br>21<br>17<br>32<br>6 |  | C<br>25<br>14<br>18<br>12 | D<br>13<br>23<br>41<br>15 | 11<br>13 Availability<br>19 | 03 |  |  |
| 5A. | Find the maximum value of $Z = 2x + 3y$ using graphical method<br>subjected to the constraints<br>$x + y \le 30,  y \ge 3$<br>$0 \le y \le 12$ , $0 \le x \le 20.$<br>$x - y \ge 20$                                                                                                                                                                                                                                                                                                                                                                |                |                                                       |  |                           |                           |                             |    |  |  |
| 5B. | A manufacturer produces two types of models $M_1$ and $M_2$ . Each $M_1$ model requires 4<br>hours of grinding and 2 hours of polishing, whereas each $M_2$ model requires 2 hours<br>of grinding and 5 hours of polishing. The manufacture has 2 grinders and 3 polishers.<br>Each grinder works for 40 hours a week and each polisher works for 60 hours a<br>week. Profit on an $M_1$ model is Rs. 3 and on an $M_2$ model is Rs. 4. Whatever is<br>produced in a week is sold in the market. Set up an L. P. P to maximize profit in a<br>week. |                |                                                       |  |                           |                           |                             |    |  |  |
| 5C. | Using simplex method maximize $Z = 5x_1 + 3x_2$<br>subjected to the constraints<br>$x_1 + x_2 \le 2$<br>$5x_1 + 2x_2 \le 10$<br>$3x_1 + 8x_2 \le 12$ , $x_1 \ge 0, x_2 \ge 0$                                                                                                                                                                                                                                                                                                                                                                       |                |                                                       |  |                           |                           |                             |    |  |  |