

					 	-
Reg No						
Meg Ivo	- 1					
0						

DEPARTMENT OF SCIENCES II SEMESTER M.Sc (CHEMISTRY) END SEMESTER EXAMINATIONS, June 2017

SUBJECT: INORGANIC CHEMISTRY II [CHM 602]

REVISED CREDIT SYSTEM

Time: 3 Hours

Date: 13/06/2017

MAX. MARKS: 50

Instructions to Candidates:

- Answer ANY FIVE FULL questions.
- Draw diagrams and write equations wherever necessary.
- 1. A. i) a) Describe any four applications of coordination compounds.
 - **b)** How do you distinguish overall stability constant from stepwise stability constant in complexes.
 - ii) Distinguish between the following; a) Distribution coefficient and distribution ratio b) Inorganic and organometallic complexes.
 - B. i) Explain four factors that affect the column efficiency of liquid chromatography.
 - ii) Describe the following isomerism in coordination compounds: a) Ionization isomerism b)Linkage isomerism.
- **2. A.** i) Explain three basic steps involved in the mechanism of solvent extraction process for metals. Write the solvent extraction procedure for the determination of copper. How do you choose a solvent for a particular extraction?
 - ii) Describe the three processes which create magnetic fields in an atom. List the sources of paramagnetism in inorganic complexes.
 - **B.** i) Describe the principles and applications of the following chromatography techniques; a) Ion exchange chromatography b) Size exclusion chromatography
 - ii) Iron forms a chelate that will extract into nitrobenzene with a distribution coefficient of 3. What percentage of the iron will be extracted from a 25 mL sample if 10 mL of nitrobenzene is used?

(6+4)

- **3. A. i)** Describe different steps involved in the column chromatographic process. Write a technical note on the applications of GC in the qualitative and quantitative analysis.
 - ii) Sketch all stereoisomers for each of the following and state the type of isomerism;
 - a) $Pt(NH_3)_2Br_2$ (square planar) b) $[Cr(en)_3]^{3+}$, $[en=H_2NCH_2CH_2NH_2]$
 - B. i) Describe the two limitations of CFT.
 - ii) Sketch and explain the orbital picture and MOELD for an octahedral complex with metalligand pi bonding involving ligands having the pi-donor capability.

(6+4)

- 4. A. i) What is the role of matrix in a composites? Explain the synthesis of thin films by PVD method.
 - ii) What is coenzyme B12? Explain its function in metabolism with an example.
 - B. Give reasons for the following observations;
 - a) $[Cu(CN)_2]^{-1}$ is colorless while $[Cu(NH_3)_4]^{2+1}$ has blue color
 - b) cis-[PtCl₂(en)] is chiral while cis-[RhCl₂(NH₃)₄]⁺ is achiral.
 - c) $[Cr(CN)_6]^{4-}$ is a low spin complex, whereas $[Cr(H_2O)_6]^{2+}$ is a high spin complex
 - d) $[Fe(H_2O)_6]^{2+}$ is paramagnetic whereas $[Fe(CN)_6]^{4-}$ is diamagnetic.

(6+4)

- 5. A. i) Explain Bohr's effect on oxygen saturation curves of hemoglobin and myoglobin. What are the differences in their saturation curves?
 - ii) What are the roles of metal ions in the biological systems? Explain the structure and function of carbonic anhydrase.
 - B. i) What are apoenzymes? Explain the mechanisms of enzyme catalysis.
 - ii) What do you mean by cooperative binding of oxygen in hemoglobin? Explain the picket fence model of hemoglobin.

- 6. A. i) Explain the principle of liquid crystal thermography? Describe two of its applications.
 - ii) Distinguish the followings;
 - a) Thermotropic and lyotropic liquid crystals
 - b) fuel cell and galvanic cell
 - c) Soda glass and pyrex glass
 - B. i) Describe the construction and working of solar cells.
 - ii) Write an explanatory note on any two types of smart materials.

(6 + 4)