

Reg. No.					

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, M. Sc. (C) II SEMESTER END SEMESTER EXAMINATIONS, JUNE 2017

SUBJECT: ORGANIC SPECTROSCOPY - II [CHM 608]

(REVISED CREDIT SYSTEM)

Time: 3 Hours

Date: 17th June, 2017

MAX. MARKS: 50

Note: Answer any five full questions.

- 1.A. Predict and explain the hyperfine ESR spectrum of H₃C *CH₂ and *CF₂D free radicals.
- 1.B. Discuss the principles of Mossbauer spectroscopy along with the conditions for resonant and non-resonant absorptions.
- 1.C. Explain, how to distinguish the n-butyl alcohol and sec-butyl alcohol by ¹³C NMR spectroscopy?

[4+4+2]

- 2.A. Discuss the following;
 - (i) Internal standard used in NMR spectroscopy
 - (ii) Deuteriation
- 2.B. Discuss two of the alternative means to magnetic/electrostatic focusing for mass separation in mass spectrometry. Write their advantages.
- 2.C. The mass spectrum of 2-methylhexane is given below. What is the m/z value of the M+ peak and of the base peak? Give possible structures of the fragments giving rise to the large peaks at m/z = 85, 57, and 43.

[4+4+2]

3.A. Write a note on ¹⁹F and ³¹P NMR spectroscopic techniques. Why CFCl₃ is considered as a standard for ¹⁹F spectroscopy?

- 3.B. Discuss the principles of ESR spectroscopy. What are the different terms involved in the total Hamiltonian of the system?
- 3.C. What is meant by isomer shift? Explain the reasons for isomer shift.

[4+4+2]

- 4.A. Differentiate between the following;
 - (i) Electron impact ionization and chemical ionization
 - (ii) Continuous wave NMR and FTNMR
- 4.B. (i) Deduce the structure of the organic compound using the NMR data given below;

(I) Molecular for	rmula, C4H	6O ₂	(II) Molecular formula, C ₈ H ₈ O ₂				
Chemical Shift (ppm)	Peak area	Splitting pattern	Chemical Shift (ppm)	Peak area	Splitting pattern		
12.5	1	singlet	7.78	0.19	doublet of doublets		
6.22	1	singlet	7.22	0.10	triplet		
5.62	1	singlet	7.11	0.19	triplet		
1.9	3.06	singlet	3.58	0.30	singlet		

- (ii) Explain any two methods used for the simplification of complex proton NMR spectra.
- 4.C. What are metastable ions? Write their significance. Calculate the m/z value for the parent ion (m1) that produce the normal daughter ion (m2) having m/z value of 61 and metastable daughter ion (m*) having m/z value of 31.8.

[4+4+2]

- 5.A. What is meant by the γ -effect of a carbon substituent on the chemical shift values in 13 C spectroscopy? Describe the various regions of 13 C chemical shift (δ) values of functionalized hydrocarbons with examples.
- 5.B. Describe the theory of NQR transitions for axially symmetric systems.
- 5.C. Explain the following:
 - (i) FeSO₄ has quadrupole splitting but K₄Fe(CN)₆ does not show quadrupole slitting.
 - (ii) The Mossbauer spectrum of ¹²⁷I is a single line for IF₆⁺AsF₆⁻, but in CsIF₆ it shows a large quadrupole splitting.

[4+4+2]

- 6.A. Explain the factors affecting coupling constant.
- 6.B. Using the mass spectrum of 2,2,4-trimethylpentane shown below, answer the questions that follow about its fragmentation.

- In this case, the molecular ion is of such a low intensity it is not detected. Draw the structure of molecular ion and determine its m/z value.
- Draw a likely structure of molecular ion that produces a base peak signal at m/z of
- (iii) Draw a fragmentation mechanism that could produce the ion responsible for the signal at m/z = 56 from the base peak ion?
- (iv) Draw likely structures for the ions that produce the signals at m/z=43 and 41.
- Discuss the factors influencing the fragmentation of organic compounds.

[4+4+2]