

Reg. No.					

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, II SEMESTER M.Sc (CHEMISTRY) END SEMESTER EXAMINATIONS, APRIL/MAY 2017

PHYSICAL CHEMISTRY II [CHM 606] (REVISED CREDIT SYSTEM)

Time: 3 Hours

Date: 25-4-2017

MAX. MARKS: 50

Note: (i) Answer any FIVE FULL questions

(ii) Draw diagrams, and write equations wherever necessary

- 1. (a) Prove that principles of quantum mechanics are applicable only to micro particles.
 - **(b)** Show why it is not possible to plate zinc on to platinum by electrolysis of a zinc salt at unit activity in neutral solution at a current density of 1 mAcm⁻². Given the tafel constants for the deposition of zinc on platinum are a = 0.280 V and b = 0.059 V respectively,.
 - (c) Derive time independent Schrödinger wave equation

[2+2+6]

- 2. (a) Justify the following statement: Large excess of potential required for constant current Coulometric method.
 - **(b)** (i) The speed of a 1 gm projectile is known to be within 1×10^{-6} ms⁻¹. Calculate the minimum uncertainty in its position. (Given: $h = 6.626 \times 10^{-34}$ J s.)
 - ii) What is the wavelength of the light absorbed when an electron in a linear molecule $10A^{\circ}$ long makes a transition from the energy level, n=1 to the level n=2 (mass of electron= $9.109 \times 10^{-31} \text{ kg}$)
 - (c) Set up Schrodinger wave equation for particle rotating in a sphere, separate the variables and solve for theta '\theta' equation.

[2+2+6]

- **3.** (a) Justify the following statement with an example: All quantum mechanical operators need not commute with one another.
 - (b) Which of the functions $\sin 3x$ and $5x^3$, are Eigen functions of d^2/dx^2 ? For the Eigen function state the Eigen value.
 - (c) Derive the Butler-Volmer equation for a single step one electron transfer electrode reaction

[2+2+6]

- **4.** (a) Justify the following statement: Solution of a particle in a box model is useful in calculation of bond length of conjugated dienes.
 - **(b)** A concentration cell was constructed by immersing two silver electrodes in 0.05M and 0.1M AgNO₃ solution. Write cell representation, cell reactions and calculate the EMF of the concentration cell.
 - (c) Elucidate the structure of 1,3 butadiene using Huckel molecular orbital theory and give the graphical representation of Huckel molecular orbitals

[2+2+6]

- 5. (a) Justify the following statement: Equilibrium electro-analytical techniques deal with the systems where no current is drawn from or fed into.
 - (b) Calculate the wavelength of an electron ($m = 9.109 \times 10^{-31}$ kg) having potential energy equal to 1000 eV. Express your answer in S.I Unit.
 - (c) Transform Schrödinger wave equation from cartesian co-ordinates (X,Y) to polar coordinates.

[2+2+6]

- 6. (a) Calculate the electron density of bonding and antibonding molecular orbitals of molecular hydrogen ion. Sketch the energy levels of the molecular orbitals
 - (b) (i) What is corrosion? Describe the mixed potential theory, with the help of a plot, explain the determination of E_{corr} and i_{corr} value of any metal.
 - (ii) Explain and write the significance of the following:
 - (a) Exchange current density (b) Polarisation

[4+6]
