

Reg. No.					

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, M.Sc (P/C/M/G) IV SEMESTER END SEMESTER EXAMINATIONS, APRIL 2017

SUBJECT: NUMBER THEORY AND CRYPTOGRAPHY [710.4]

	(REVISED CREDIT SYSTEM)					
Time: 3 Hou	rs Date:28/04/2017	MAX. MARKS: 50				
Note: (i) Ans	wer any FIVE FULL questions. (ii) Each questi	on has 3 sub questions.				
1A)	Express the prime 12277, which divides 20^6 squares.	+ 1, as a sum of two				
1B)	Factor: $14348906 = 3^{15} - 1$.					
1C)	Prove that if $g. c. d. (a, m) = 1$, then $a^{\varphi(m)} \equiv 1 \mod m$.					
		(Marks: 4+3+3)				
2A)	Prove that there are exactly $\varphi(q-1)$ generato	rs of a finite field F_q .				
2B)	Define Euler phi-function. If $\varphi(18,281) = 18$ primes whose product is 18,281.	,000 which are the two				
2C)	Define the Jacobi symbol. Determine whether residue modulo the prime 3911.	er the prime 3083 is a (Marks: 4+3+3)				
3A)	Read the message "OAG?", which was e enciphering transformation of digraph vectors of with numerical equivalents of A-Z being 0-2. !=28. The same encryption process was used to "SHOT" as the ciphertext "HANG".	encrypted by a linear over 29 letter alphabets 5, blank=26, ?=27 and o encipher the message				
3B)	Police could identify the name of a criminal a encrypted as "V&LN" using an affine mappin over 31 letter alphabets with 26=&, 27=blank,	as "RAVI", which was ag of digraphs $31x + y$ 28=?, 29=! and $30=@$.				

Who was the killer from the same group of criminals with encrypted name "NLQJ" escaped last week ?

- **3C)** Define an Euler pseudoprime. Prove that a Carmichael number must be the product of at least three primes. (Marks: 4+3+3)
- **4A)** State and prove the law of Quadratic Reciprocity.

4B) Use the continued fraction algorithm to factor 13561.

4C) Use the Rho method with $f(x) = x^2 - 1$, $x_0 = 5$ to factor 7031.

(Marks: 4+3+3)

- 5A) Using Silver-Pohlig-Hellman algorithm, find the discrete log of 37 to the base 2 in F_{73}^* .
- **5B**) Use generalized Fermat factorization to factor 29895581.
- 5C) You received a trigraph message "AIR", which was an encryption of a digraph plaintext in 26 letter alphabet using RSA cryptosystem. Suppose your public key is $K_E = (n, e) = (713, 283)$. Decode the message and read it. (Marks: 4+3+3)
- **6A)** Find a square root of 32 modulo 97.
- **6B**) A message is encrypted as a pair (12, "VX") using the ElGamal cryptosystem over single letter message units and sent to an user who selected a secret integer a = 15 and the generator g = 2 of the finite field F_{29} . How can the user read the actual message?
- 6C) Explain how a set of partners exchange the keys for their secured communication using Diffie-Hellman key exchange protocol. Establish this by an example of exchanging secret keys which are elements of the finite field with 11 elements, by three individuals, taking 2 as a generator. (Marks: 4+3+3)
