

Reg. No.					

Deemed- to -be -University under Section 3 of the UGC Act, 1956

DEPARTMENT OF SCIENCES, M.Sc. (PHYSICS) III SEMESTER - END SEMESTER EXAMINATIONS, JUNE 2017

SUBJECT: NUCLEAR PHYSICS I [PHY-707.5]

(REVISED CREDIT SYSTEM)

т	ïme: 3 Hours	Date:	MAX. MARKS: 50	
Note:	(i) Answer Any FIVE f	ull questions. Each sub question	ns carries FIVE marks.	
1.	(a) What are experir	nental characteristics of beta ray	continuum? [5]
	(b)Explain "Energy S	raggling" with help of plots of e	energy distribution of a beam of initi	ially
	mono energetic char	ged particles at various penetrat	ion distances. [5]
2.	(a) Explain major inte	eraction mechanism of gamma ra	adiation with matter. [5]
	(b) What is scintillati	on process? Explain working pri	nciple of inorganic scintillation radia	tion
	detector?		[2	.+3]
	/ · · · · · · · · · ·			~
3.		n of different regions in a typica	al gamma ray spectrum obtained for	
	137 source.		[5]
	(b) Why Ge (Li) radi	ation detectors have to be kept	t at liquid Nitrogen temperature. W	/hat
	potential must be de	veloped across the capacitor of	f capacitance 300 μ F in a Si detector	, by
	the absorption of 5	MeV alpha particles which p	roduces one ion pair for each 3.5	eV
	expended?		[2	+3]
4.	(a) Sketch and explai	n decay scheme of Co-60 radiois	otope. [5]
	(b) Explain the role	of the activator added in trace q	uantities to many inorganic scintillat	tors.
	Assuming the decay	constant of 230 ns, how much t	time is required for NaI (Tl) scintilla	tion
	event emit 99% of th	e total light yield.	[2	+3]
5.	(a) Explain mass spe	ctroscopic method of approach	to the observation of double beta de	ecay
	with an example.		[5]
	(b) Mono energetic 4	50-keV gamma rays are absorbe	d in a NaI(TI) crystal having an efficie	ency
	of 12%. Seventy-five	percent of the scintillation photo	ons, which have an average energy of	2.8
	eV, reach the cathod	e of a photomultiplier tube, whi	ch converts 20% of the incident phot	tons

into photoelectrons. Assume that variations in the pulse heights from different gamma photons are entirely due to statistical fluctuations in the number of visible photons per pulse that reach the cathode. (a) Calculate the average number of scintillation photons produced per absorbed gamma photon. (b) How many photoelectrons are produced, on the average, per gamma photon? [5]

6. (a) Explain activation method of neutron flux measurement.

(b) Explain conduction band – valence band model for the "Readout" phase of thermo luminescence mechanism (TLD). A 2.6 MeV neutron has a collision with hydrogen. If neutron loses 0.75 MeV, at what angle is it scattered. [2+3]
