Reg. No.

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

IISEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, MAY 2017 (REGULAR)

BIO5221- BIOREACTOR DESIGN AND ANALYSIS

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Explain the various dimensionless parameters used to describe the intra- particle diffusion effects in immobilized enzyme system and explain their physical significance.									3
1B.	Hydrolysis of Rice bran oil was carried out in a fixed bed bioreactor using immobilized lipase. The enzyme was immobilized on non-porous glass beads of 2mm diameter. The substrate ($S_0=2$ M) is pumped from the bottom of the reactor at volumetric flow rate of 8ml/min. Calculate: (i)Interfacial substrate concentration (ii) Damkholar number (iii)Film effectiveness factor Data: V _{max} =0.0281 M/min, K _m =0.231 M, K _{La} =0.09 min ⁻¹									5
1C	Explain the various techniques that are used to minimize the film resistance in immobilized packed bed bioreactors.								2	
2A.	What do you mean by constant feed rate policy in the operation of immobilized enzyme reactor system? Develop a suitable model for predicting the time course profiles of conversion due to enzyme deactivation for M-M kinetics, no pore diffusion effects in packed bed bioreactor (PFR).								5	
2B.	The batch growth data of Bacillus species that is obtained from the sha experiments is given in the following table. You are asked to design stage Chemostat reactor system with continuous feed flow rate of which will produce product P at a concentration of 0.55 g/l. Recomm best reactor set up which minimizes the total volume. Use the graphica procedure Data:									5
	Time (h)	0	4	6	8	10	12	14	16	
	X (g/l)	0.5	1.0	3.0	4.75	7.5	8.0	8.0	8.0	
	P (g/l)	0	0	0	0.02	0.09	0.2	0.5	0.56	
3A.	 Consider an enzymatic reaction that is taking place in a cascade reactor system of 'N' Chemostats in series with inlet substrate concentration of S₀. (i)For Michaelis-Menten kinetics derive an expression for the average residence time of the ith reactor, τ_i in terms of S_{i-1}, the substrate concentration entering the reactor, S_i the substrate concentration in the ith reactor and the enzyme kinetic parameters. (i)Rewrite this equation in 								6	

	dimensionless form by introducing following parameters $\alpha = S/S_o$, $k = K_m/S_o$ & $\theta = (\tau_i V_{max})/S_o$ (ii) Find the intermediate α_i values which correspond to the maximum total residence time. Mathematically, these values must satisfy the following equation: $\frac{d[\Sigma_{i=1}^N \theta_i]}{d\alpha_i} = 0$ i = 1, 2, , N – 1. Show that this equation reduces to the following simple result: $\alpha_i = \alpha_{i+1}^{i/i+1}$ i = 1, 2, , N – 1 So $\int \int \int$									
3B	CASCADE REACTOR SYSTEM OF 'N' CHEMOSTATS IN SERIES Write on the working of following industrially used bioreactors I. Bubble column bioreactor II. Air lift bioreactor									
4A.	Lactic acid is produced using Lacto bacillus in a Chemostat under sterile environment with glucose as the substrate, $S_0=4$ g/l at dilution rate of D=0.3 h ⁻¹ . Steady state substrate and biomass concentrations are 1.5 and 1.0 g/l respectively. Assume that growth follows the Monod's kinetics with, $\mu_m=0.53$ h ⁻¹ , Ks=0.12 g/l and Y=0.4 I. Find the controllability matrix for the above system II. Do you feel that above system is controllable?									
4B.	Write the elements of A-matrix during Wash out unstable operation of Chemostat. Find the Eigen values for Biomass and Substrate and based their signs prove that system is unstable.									
5A.	The following data were obtained from a non-ideal bioreactor during the RTD experiment using NaCl solution as the tracer material. Calculate i. Dispersion number (D/UL) and comment on non-ideality ii. Draw the E (θ) vs θ curve RTD data:Time05101520253035Tracer03554210(min)112101Tracer03554210	6								
5B.	Write on the different tracer input signals that are used in RTD experiment. What should be the desirable properties of the tracer material that is used in RTD experiment?	4								