MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL A constituent Institution of Manipal University II SEMESTER M. TECH (INDUSTRIAL BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, MAY 2017 SUBJECT: STATISTICAL DESIGN AND ANALYSIS OF EXPERIMENTS IN BIOTECHNOLOGY [BIO 5253] REVISED CREDIT SYSTEM

Reg. No.

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1	Assume that the refractive index (n_D) follows the multiple linear equation $n_D = A + BW_p + CW_s$. The regression coefficients values are as follows: $A = 1.3$; $B = 0.145$; $C = 0.296$. Calculate the value of R^2 and ARD.											10
	WP	0.25	0.3	0.35	0.4	0.45	0.25	0.3	0.35	0.4	0.45	
	Ws	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	
	nD	1.3452	1.3532	1.3592	1.3674	1.3741	1.3481	1.3557	1.3628	1.3697	1.3776	
2	A chemical engineer is investigating the yield (Y) of a process. Two process variables (X ₁ and X ₂) are of interest. Each variable can be run at a low and high level, and the engineer decides to run a 2^2 design with five center points. The design and the resulting yields are as follows: Yield at the factorial points (in standard order): 63.1, 87.8, 50, 76.3 and the yield at the center points: 80.5, 76.8, 79.2, 77.5, 78.4. Fit this data into a regression model Y = A + BX ₁ + CX ₂ by least square regression method.									10		
3	The facitric a The real CRF	Your aim is to maximize the chromatographic response function (CRF) in a HPLC meth The factors studied in this study with their levels in the eluent of acetic acid, methanol a itric acid are given below:FactorLowHigh 0.004 Acetic acid (mol/L) 0.004 0.01 % Methanol7080Citric acid (g/L)26							anol and	10		
4A.	Explain the following concepts in DOE with an example:									5		

	a. Hidden replicationb. Free of bias	n								
4B.	You are interested in optimizing the enzyme activity of a fermentation process by checking different combinations of two factors namely, pH ($2 \le pH \le 7$) and temperature ($20 \le T \le 40$ °C). A first order model in coded variables has been fit to yield data from 2^2 designs. The design and the resulting enzyme activity (IU) are as follows: IU at the factorial points (in standard order): 3.93, 4, 4.09, 4.15, and IU at the center points: 4.03, 4.05, 4.07, 4.02, 4.06. The model is $Y = 4.04 + 0.0325 X_1 + 0.0775 X_2$.									
5A	Assume that you have got a second order model equation at the end of response surface methodology. How do you check the following? Support your answers with specific plots as applicable: i. significance of the model ii. significance of each terms in the model iii. normal distribution of errors iv. independency of errors v. lack of fit of the model									
5B	You studied the effects of three factors of interest on the yield of a reaction using a full (two- level) factorial design plus three center points. Now you want to make it a full central composite design. List the additional runs that are needed in the table below, in both coded and uncoded form.									
		Variable	Α	В	C]				
		Low	13.6	0.8	6.8	_				
		High	14.8	1.6	7.4					