

M.TECH. (CHEMICAL ENGINEERING)

END SEM EXAMINATIONS, APRIL 2017

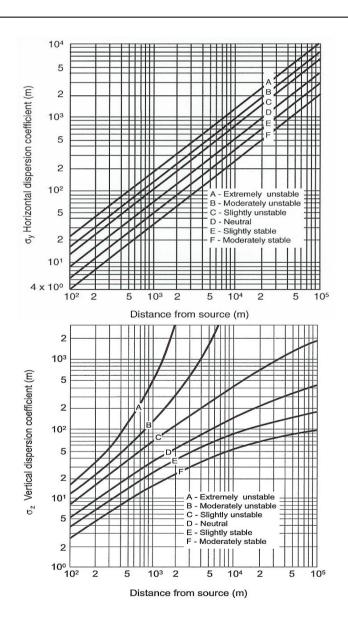
SUBJECT: AIR POLLUTION MONITORING AND CONTROL [CHE 5123]

REVISED CREDIT SYSTEM DATE: 25/4/2017

Time: 3 Hours MAX MARKS: 100

Instructions to Candidates:

- ❖ Answer **FIVE FULL** questions.
- ❖ Missing data may be suitable assumed.


1A	(i) What is inversion? Describe with a neat diagram, the different kinds of	5
	inversions possible in the atmosphere?	
	(ii)If the whole atmosphere would suddenly liquefy due to a drastic event,	1
	what would the height of the atmosphere be? (in feet above the sea level)	
	(iii)List the reasons for high air pollution in India.	4
1B	(i)With a neat diagram discuss any two types of plumes in air pollution.	5
	(ii)Analyze the current air pollution scenario in a city of your choice. What	
	solutions do you provide?	5

2A	(i)With a neat diagram explain the working of a high volume sampler for	6
	particulate matter.	
	(ii) What is summer smog? Describe the reactions causing it.	2
2B	It is proposed to establish a 750 MW power plant in your city. The plant	
	emits 143,000 lb/day of SO ₂ from effective height of 250m. Estimate	
	concentration of SO ₂ at a house which is at downwind distance of 4km if the	
	wind speed is 6.63 m/s.	
	i) At ground level.	4
	ii) At the centerline of the plume.	4
	iii) List steps you would propose to reduce the effect of the air pollution	
	caused by the plant if the other contaminants from the plant include	4
	particulate matter and NO _x	
	Assume stability class is C. Does the plant satisfy the PCB NAAQ	
	standards? Assume Gaussian plume. Consider ground reflection of plume.	
	Dispersion coefficients are in figure below	

3A	With a neat sketch explain the working NDIR for measurement of gaseous	10
	pollutants	
3B	Explain the working of a tape sampler with a neat diagram.	10

4A	Draw a neat chart of temperature dependence of NOx formation and explain	10
	thermal NOx, fuel NOx and prompt NOx.	
4B	With a neat diagram explain working of forced oxidation limestone scrubber	10
	for removal of SO ₂	

5A	i)Define VOCs. Name a few common VOCs	2
	ii)What are the control strategies to reduce VOC pollution?	8
5B	i) Why is CO called a silent killer?	2
	ii) With a figure of excess air vs carbon monoxide production explain the strategies to reduce carbon monoxide?	6
	iii) List the methods to reduce carbon dioxide (CO ₂) emissions?	2

Dispersion coefficients for various stability criteria