

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University

II SEMESTER M.TECH. (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2017 SUBJECT: ADVANCED PRESTRESSED CONCRETE [CIE 5252] REVISED CREDIT SYSTEM

(22/04 /2017)

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitably assumed.
- Use of 18:1343-2012,18:784-2001, Authorized Design Aid are permitted

1A.	A post-tensioned beam of span 12 m has a rectangular section 300 mm wide and 900 mm deep. The beam is pre-stressed by a parabolic tendon concentric at the supports and with an eccentricity 300 mm at the centre of span. The cross-sectional area, A_p of uncoated stress-relieved strand (galvanized) in the tendon is 560 mm ² and $f_{pk} = 1570$ MPa. The tendon is stressed by using jack at the left end up to 75% of f_{pk} . Calculate a) the expected elongation of the tendon after stretching, b) loss due friction and wobble till mid span c) loss due to anchorage slip of 4 mm, assume $E_s = 200000$ MPa, Grade of concrete = M40, tendons are stretched simultaneously.	5
1B.	A bonded post-tensioned concrete beam has flanged -section: top flange 450 x 175mm, bottom flange 300 x 250 (depth) mm, web 140 x 550 depth mm. The beam is pre-stressed by tendons of area 1750 mm ² located at 125 mm from the soffit (bottom surface) with an effective prestress of 1100 MPa. Tensile strength of tendon, f_{pk} is 860 MPa. Grade of concrete is M60. Estimate the ultimate flexural strength by the method of IS 1343- 2012.	5
2.	Design a Post-tensioned Type-I PSC continuous rectangular beam of two equal span, AB=10 m and BC = 10 m to carry a live load of 15 kN/m. The beam has to be casted using M-45 grade concrete and has to be pre-stressed using 9.5 mm 7-plystrand of nominal c/s area of strand is of 51.6 mm ² , having characteristic strength of 1465 N/mm ² . Take strength of concrete at transfer as $0.7f_ck$, and pre-stress in strand after transfer 970 N/mm ² . Assume 15% loss at service. Sketch the maximum and minimum eccentricities of the prestressing force at different locations along the span of beam. Check the section at mid-support for permissible stresses.	10
3.	A composite tee beam is made up of a pre-tensioned rib 330 mm thick and 1000 mm deep and a cast-in-situ slab of 200 mm thickness and 1200 mm width. The beam is simply supported over a of span 15 m to support an imposed load of 18 kN/m. Assume grade 40 concrete in precast web and slab and high strength wire of $f_{pk} = 1470$ MPa. Assume long term loss in cable as 15%. Design the composite section and shear connections. Compute stresses at the critical section at various stages. The precast member is unpropped during the casting of the CIP portion.	10

Reg. No.						
----------	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY

A Constituent Institution of Manipal University Design a simply supported pre-stressed post-tensioned (type 1) slab for the following data. Effective span = 7 m, grade of concrete = M40, Live load = 2 kN/mm^2 . Floor finish = 1.5 4. 10 kN/m^2 , grade of high strength wire, $f_{pk} = 1470$ MPa (7 mm diameter). Assume long term losses as 15%. Check for deflection using creep coefficient as 1.6. A non-cylindrical pre-stressed concrete pipe of internal diameter 1500 mm and length 4m, is required to with stand a working pressure of 1.6 N/mm². Design pipe thickness, and longitudinal and circumferential pre-stressing forces, spacing of wires. Assume circumferential winding by the process of counter weight/break. Use high tensile wire of 5 mm diameter ultimate strength 1570 N/mm² and M-40 grade concrete. Assume: i) minimum compressive stress under working load to be 1.0 N/mm², ii) coat thickness as 25 mm, iii) strength of 5A. 10 concrete at winding 30 MPa and at Detensioning longitudinal 20 MPa, iv) bedding angle = $120^{\circ} \& \theta = 180^{\circ}$. Calculate for circumferential pre-stressing requirement, i) stresses due to external load water weight, ii) stresses induced in core at factory test, iii) stresses in pipe core due to internal pressure at factory test.