

AANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

IISEMESTER MTECH (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2017

SUBJECT: FINITE ELEMENT METHOD OF ANALYSIS - II [CIE 5251]

REVISED CREDIT SYSTEM / /2017) (

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

1A.	Obtain the Jacobian matrix for eight noded brick element with dimensions 0.4 m along X- direction, 0.6m along Y direction and 0.3 m along Z direction and the origin at node 1.	5
1B.	Explain the procedure to obtain stiffness matrix for eight noded plate bending element	5
2A.	Using the principle of minimum potential energy obtain the relationship for dynamic equation of equilibrium $kq+mq=f(t)$	3
	Condense the stiffness matrix and load vector by eliminating the degrees of freedom q2 for the following equation of equilibrium using Gauss elimination technique	5
2B.	12 10 6 q1 70	
	$10 14 4 \qquad q2 = 80$	
	6 4 12 q3 40	
2C.	Differentiate between incremental and iterative procedures for material non linearity	2
3A	Obtain the Eigen values and Eigen vectors for a cantilever beam of length 3 m. The geometric and material properties are as follows: $c/s area = 0.3 m^2$ moment of inertia = $1 \times 10^{-4} m^4$ modulus of elasticity = $2 \times 10^7 kN/m^2$	6
3B	Explain mesh refinement v/s higher order elements	4
4A	Explain the iterative procedure for material nonlinearity	5
4B	Obtain the geometric stiffness matrix for two noded pin jointed element in local and global directions	5
5A	Explain elastic half space approach for soil-structure interaction analysis	4
5B	Obtain the shape functions for four noded triangular element using the shape functions of six noded triangular element	3
5C	Explain sub structure technique	3