

MANIPAL INSTITUTE OF TECHNOLOGY

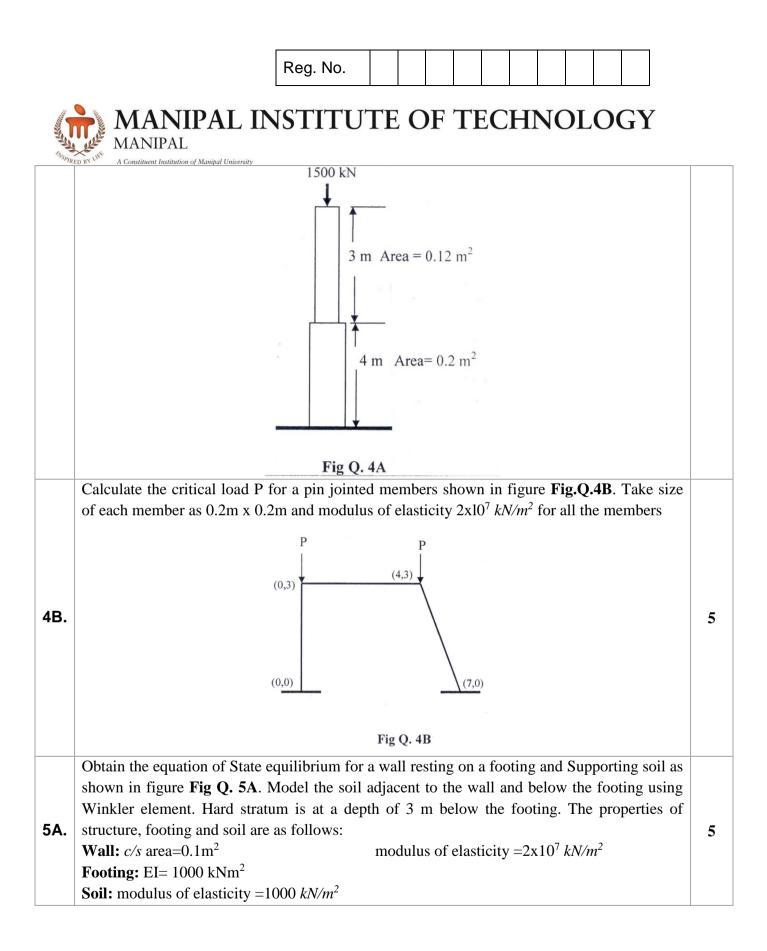
, A Constituent Institution of Manipal University

## II SEMESTER M.TECH. (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, APRIL/MAY 2017

SUBJECT: FINITE ELEMENT METHOD OF ANALYSIS - II [CIE 5251] REVISED CREDIT SYSTEM

## (20/04 /2017)

Time: 3 Hours


MAX. MARKS: 50

## Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitably assumed.

| 1A. | Explain the procedure to obtain stiffness matrix for eight noded three dimensional brick element                                                                                                                                                                                                                                                                                                                                                                              | 5  |  |  |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| 1B. | Obtain the constitutive matrix, C, for a thick plate bending element                                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |  |  |
| 2A. | Explain the term band width and its minimization for a simple plane frame structure.                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |  |  |
| 2B. | Differentiate between geometric and material nonlinearity                                                                                                                                                                                                                                                                                                                                                                                                                     |    |  |  |  |  |  |
| 2C. | Obtain the mass matrix for three noded triangular element for plane-stress condition                                                                                                                                                                                                                                                                                                                                                                                          |    |  |  |  |  |  |
| 3A. | Obtain the equation dynamic equilibrium for a continuous beam shown in figure <b>Fig.Q3A</b> .<br>Take EI = 100 kN/m <sup>2</sup> and mass density = 2 kNsec <sup>2</sup> /m <sup>4</sup> , c/s area =0.1 m <sup>2</sup> . Write the equation in finite difference form if a point load of 100 kN is suddenly applied at the free end<br>$\frac{2 \text{ m}}{1 \text{ m}} = \frac{1 \text{ m}}{1 \text{ m}}$ Fig Q.3A                                                         | 08 |  |  |  |  |  |
| 3B. | What is beam column element? When this element is used in finite element analyses                                                                                                                                                                                                                                                                                                                                                                                             | 02 |  |  |  |  |  |
| 4A. | Axially loaded column having two parts with different c/s areas as shown in figure <b>Fig. Q.4A</b> is subjected to axial load of 1500 kN. The modulus of elasticity of the column is modeled using a nonlinear relationship $Ei=2x10^{5}[0.4-\varepsilon i/0.3]^{2}$ . Where $\varepsilon i$ is the strain in each part of the structure. Using incremental method obtain the displacements at the nodes and forces in each element of the column after two load increments. | 5  |  |  |  |  |  |



|         |                                                                                                   | Reg. No.   |       |      |   |    |    |   |    |     |    |    |  |  |
|---------|---------------------------------------------------------------------------------------------------|------------|-------|------|---|----|----|---|----|-----|----|----|--|--|
| ASPIR D | <b>MANIPAL I</b><br>MANIPAL<br>A Constituent Institution of Manipal University                    | NSTITU     | ΤЕ    | C    | F | TI | EC | H | NC | )L( | 00 | GΥ |  |  |
|         |                                                                                                   | 200 kN     | 1     |      |   |    |    |   |    |     |    |    |  |  |
|         |                                                                                                   | 100 kN — . |       |      |   |    |    |   | GL |     |    |    |  |  |
|         |                                                                                                   | 3 m   5    | soil  |      |   |    |    |   |    |     |    |    |  |  |
|         |                                                                                                   | 3 m 3      | m     |      |   |    |    |   |    |     |    |    |  |  |
|         |                                                                                                   | soil       |       |      |   |    | 1  |   |    |     |    |    |  |  |
|         |                                                                                                   | F          | 'ig Q | . 5A |   |    |    |   |    |     |    |    |  |  |
| 5B.     | <ul><li>Write short notes on</li><li>i) Static condensation to</li><li>ii) Aspect ratio</li></ul> | echnique   |       |      |   |    |    |   |    |     |    |    |  |  |