Reg. No.					
----------	--	--	--	--	--

II SEMESTER M.TECH. (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, JUNE/JULY 2017

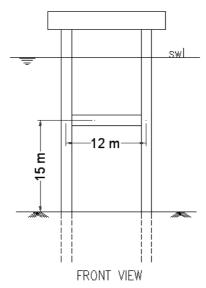
SUBJECT: OFFSHORE STRUCTURAL ENGINEERING [CIE 5259]

REVISED CREDIT SYSTEM (/ /2017)

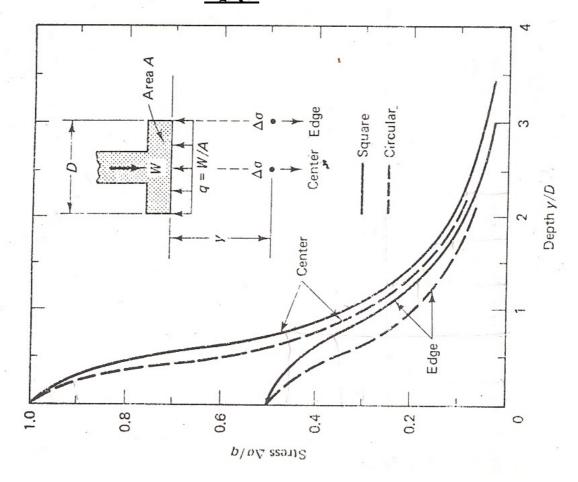
Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** questions.
- Missing data may be suitable assumed.


_	Explain briefly the advantages and disadvantages of jacket type and gravity type	06
1 A .	offshore structure.	Ub
1B.	Determine the wave length by Airy wave theory for a wave of period 10 sec in 55 m depth of water. Also, determine the maximum horizontal water velocity and wave speed assuming a wave height of 8.0m.	04
2.	Determine the maximum wave force and moment at the base exerted by sea waves on the horizontal member of the structure as shown in Fig. Q.2. All piles are 1.0 m meter diameter. Adopt C_D =0.8 and C_I =1.5. The depth of water is 40 m. wave length 125 m and 12 sec wave period.	10
3.	An offshore gravity structure consists of four concrete columns supporting a deck and equipment weighing 50,000kN. The inside and outside diameter of the each column is 4m and 5m respectively. Assuming the columns unflooded; determine the dynamic amplification factor for waves of 9 sec period. Calculations show that a total force of 1000kN acting at the deck level on the entire three-dimensional structure will cause a deck deflection of 10mm. Take $\xi=0.05$, S.W.L = 60m and deck level = 70m from the foundation level. Assume the deck acts as rigid diaphragm. Also discuss the static method of analysis on dynamic effects of wave forces.	10
4.	For a typical pile of an offshore structure having a diameter of 1.2m and wall thickness of 15 mm is driven to a depth of 90m. Cyclic wave forces on the overhead structure induce estimated lateral cyclic load at ground-line of 1500kN towards right and estimated cyclic moment of 2500kN-m clockwise. The soil consists of sand having angle of internal friction =30°, submerged density of the soil =6.75kN/m³, N=1.9 and k=8.5MPa. Determine the deflection and rotation of the pile at the ground-line.	10
5A.	Determine the pressure induced stresses existing in a member at water depth of 55 m from still water level of an offshore structure. The member has an outside diameter of 1.0 m and a wall thickness of 20mm. Assume the ends of the member are fixed	05

CIE 5259 Page 1 of 2


Reg. No.									
----------	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL

	against displacement and rotation. Consider Poisson's ratio =0.25				
5B.	(b)What are the differences in behavior between free cylinders and restrained cylinders when subjected to pressure induced loading?	05			

Fig. Q.2

CIE 5259 Page 2 of 2