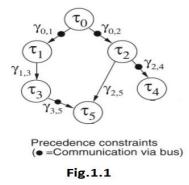


MANIPAL INSTITUTE OF TECHNOLOGY Manipal University SECOND SEMESTER M.Tech. DEGREE END SEMESTER EXAMINATION - April/May 2017 SUBJECT: System on Chip Design (ECE - 5256)

TIME: 3 HOURS


MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. Assume the features of an embedded system are given in the form of technical tasks *T0*, *T1*, *T2*, *T3*, *T4* and *T5*.
 - i. Explain the concept of application mapping and activity scheduling in a typical embedded system design flow.
 - ii. Map the application shown as task graph in **Fig.1.1** to suitable processing elements given in **Table.1.1** to finish the whole execution before 15 msec. (multiple instances of same processing element is not allowed).
 - iii. Draw the activity scheduling graph for the application mapped in above question.

Task	CPU1	CPU2	ASIC		
	T(ms)	T(ms)	T(ms)		
T0	2	3	1		
T1	2	4	6		
T2	4	3	8		
T3	4	9	5		
T4	6	8	5		
T5	8	6	9		
	$Y_{0,1} = Y_{0,2} = Y_{2,4} = Y_{3,5} = 1 \text{ ms}$				

Task Graph

T(*ms*)-*Time taken by each task to execute(in milli seconds).*

Table 1.1

- 1B. Write the special features of digital signal processor should have over other data processing elements.
- 1C. List out the design challenges of an SoC.
- 2A. Write differences among the following
 - i. MicroBlaze processor and ARM cortex-A9 processor
 - ii. Executable linkable format file and Bit file
 - iii. ASIC and FPGA
 - iv. General Purpose processor and Digital Signal processor
 - v. Zynq SoC and Programmable SoC
- 2B. Explain Hardware and Software co-synthesis in system level design flow.
- 2C. An young engineer is in confusion of selecting proper processing element to implement the following operation:

(5+3+2)

E = A X B, $F = C \div D,$ G = E + F [where A,B,C,D,E,F are registers of appropriate size]

If high speed & low cost are his primary objectives then which one you suggest among GPP, FPGA and ZYNQ SoC to get optimum solution. Give reason.

(5+3+2)

- 3A. Write and explain the design rules of RISC philosophy
- 3B. Design an automatic tea/coffee vending machine based on FSM model for the following requirement: The tea/coffee vending is initiated by user inserting a 5 rupee coin. After inserting the coin, the user can either select 'Coffee' or 'Tea' or press 'Cancel' to cancel the order and take back the coin.
- 3C. Explain AHB and APB buses of AMBA

(5+3+2)

4A. Write & Implement the cycle conserving DVS algorithm for EDF scheduler on the task set given in **Table 4.1** and **4.2**. Explain it by drawing scheduling graph.

Task	Computing time	period
1	3ms	8ms
2	3ms	10ms
3	1ms	14ms

 Table 4.1: computing times are specified at the maximum processor frequency

Task	Invocation 1	Invocation 2
1	2ms	1ms
2	1ms	1ms
3	1ms	1ms

 Table 4.2: Actual computation requirement of the task set (assuming execution at maximum frequency)

4B. For the task set given in **Table 4.3**, find the CPU utilization and find out whether it is schedulable using the RM algorithm. Draw the scheduling graph.

Tasks	Period	CPU Burst	Release Time		
T1	3	1	0		
T2	10	3	1		
T3	15	4	3		
Table 4.3					

4C. Explain the problem of stack overflow that occurs during nested exceptions, give the solution that helps in overcoming it.

(5+3+2)

- 5A. What is LEDES algorithm? Write and explain it in detail.
- 5B. In OS based embedded software implementation, draw and explain the interrupt timing diagram to process I/O request once an interrupt arises.
- 5C. List out the drawbacks that need to be taken into account while lowering supply voltage Vdd to reduce energy dissipation for SoC

(5+3+2)