Reg. No.

II SEMESTER M.TECH (ESM/PED) END SEMESTER EXAMINATIONS, APRIL - MAY 2017

SUBJECT: DESIGN OF DIGITAL SYSTEMS [ELE 5234]

REVISED CREDIT SYSTEM

Time: 3 Hours		Date: 25, April 2017	Max. Marks: 50	Max. Marks: 50	
Instr	 Answer ALL the questions. Missing data may be suitably 	y assumed.			
1A.	A given system has four sensors properly when exactly one of the when two or more sensors have to raise the alarm. Implement the	s that can produce an output of 0 or 1. The e sensors has its output equal to 1. An alar the output of 1. Design the simplest circui e circuit using 4:1 multiplexers and residua	e system operates m must be raised t that can be used al gates. (03))	
1B.	A logic circuit has two inputs, <i>Cl</i> circuit is described by the timing input, the circuit produces pulses 1B. Design a suitable circuit us positive-edge-triggered synchron assume that the delays through a	lock and Start, and two outputs, f and g . The diagram in Figure 1B. When a pulse is received on the f and g outputs as shown in the timiting only the following components: a the nous counter block and basic logic gates. All logic gates and the counter are negligible.	ne behavior of the eived on the <i>Start</i> ng diagram Figure ree bit resettable For your answer e. (02))	
1C.	Write Verilog HDL code for 8:1 m	nultiplexer using 2:1 multiplexer as a comp	oonent. (05))	
2A.	Draw the state diagram to count 256 characters. Each character is	the state diagram to count the number of '@' character [ASCII code is 40H] in blocks of aracters. Each character is represented by an 8 bit ASCII code (04)			
2B.	Draw the state diagram for the se	erial adder shown in Figure 2B.	(03))	
2C.	For the circuit shown in Figure 2	C write the behavioral Verilog HDL code.	(03))	
3A.	Write a Verilog HDL program to c FSM.	a Verilog HDL program to detect the non-overlapping sequence "1010". Use Moore type (06)	
3B.	Write a sequential Verilog HDL p or Task.	e a sequential Verilog HDL program for finding the greatest of 3 numbers using Function .sk. (0 4)	
4A.	Develop a counting system to cou at the entrance and exit door of t leaves the museum. Museum has is 100. If the number of people in closed. Write the Verilog HDL coo	Int the number of people inside the museum the museum produce an output of 1 when a s the maximum capacity of accommodating side the museum is 100, entrance door of r de to implement the same.	n. Sensors present a person enters or g people at a time nuseum should be (05))	

4B. Design 8 bit universal type shift register to do the following operations. Write the Verilog HDL code.

S2	S1	S0	Operations
0	0	0	Reset to Zero
0	0	1	Parallel Load
0	1	0	Increment
0	1	1	Decrement
1	0	0	Shift left
1	0	1	Shift Right
Others			No operation

5A. Write the short notes on following

i. Antifuse

ii. SRAM Programming Technology

(04)

(05)

- **5B.** Show how a 12 input AND gate can be implemented using Xilinx SPARTAN-IIE CLB (02)
- **5C.** Sketch the basic block diagram of Xilinx **Spartan IIE** FPGA and briefly explain the major configurable elements. *(04)*

