Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

SECOND SEMESTER M.TECH (AEROSPACE ENGINEERING) END SEMESTER EXAMINATIONS, JUNE 2017

SUBJECT: RENDEZVOUS AND DOCKING OF SPACECRAFT [ICE 5236]

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

	 Answer ALL questions. Missing data may be suitably assumed. 					
1A.	List the main phases of an RVD/B mission. Write the objectives and end conditions to be attained for each phase.	4				
1B.	What are the various complexities and constraints involved in rendezvous approach and mating process?					
1C.	Write any four applications of Rendezvous and Docking/Berthing mission?	2				
2A.	What are the design rules for trajectory safety? List the potential causes of deviations of the actual trajectory from the planned one.	4				
2B.	For an initial position measurement error of $10m$ in z – direction, compute for the following cases:	3				
	 i. If the chaser is moving in a parallel orbit, what will be the position uncertainty in x-direction after one orbital revolution? ii. If the chaser is moving with the same velocity as off target, what will be the position uncertainty in x – direction after one orbital revolution? 					
2C.	"For collision avoidance maneuver on the $R-bar$, a pure radial ΔV will not be sufficient when the chaser is very close to the target." – Justify the statement.	3				
3A.	Explain trajectory deviations (position measurement error and velocity measurement error) due to navigation errors in RVD/B mission.	4				
3B.	How does the geometrical and equipment constraint act as a driver for approach strategy during docking?	3				
3C. 4A.	Briefly explain the approach strategy for R-bar port approach. Sketch the trajectory. Write about any two time flexible elements in phasing and approach?	3				
4B.	Explain the functional principle of a scanning laser range finder.					

ICE 5236 Page 1 of 2

departure corridors. Sketch the control zones of ISS

List the drivers and constraints for the definition of the diameter of the approach and

4C.

5C.	What are the sizing features of the pressurized mating system?	2				
5B.	With block diagram explain the functional principle of Relative GPS.	3				
5A.	Describe various steps in the berthing process for a manned RVD mission.	5				

ICE 5236 Page 2 of 2